题目内容

如图,等边△OAB和等边△AFE的一边都在x轴上,双曲线y=
k
x
(k>0)经过边OB的中点C和AE的中点D.已知等边△OAB的边长为4.
(1)求该双曲线所表示的函数解析式;
(2)求等边△AEF的边长.
(1)过点C作CG⊥OA于点G,
∵点C是等边△OAB的边OB的中点,
∴OC=2,∠AOB=60°,
∴OG=1,CG=OG•tan60°=1•
3
=
3

∴点C的坐标是(1,
3
),
3
=
k
1
,得:k=
3

∴该双曲线所表示的函数解析式为y=
3
x


(2)过点D作DH⊥AF于点H,设AH=a,则DH=
3
a.
∴点D的坐标为(4+a,
3
a
),
∵点D是双曲线y=
3
x
上的点,
由xy=
3
,得
3
a
(4+a)=
3

即:a2+4a-1=0,
解得:a1=
5
-2,a2=-
5
-2(舍去),
∴AD=2AH=2
5
-4,
∴等边△AEF的边长是2AD=4
5
-8.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网