题目内容

如图,直线与y=2x双曲线y=
8
x
相交于点A、E,直线AB与双曲线交于点B,与x轴、y轴分别交于点C、D,且B点横坐标等于纵坐标的两倍,直线EB交x轴于点F,
(1)求直线AB的解析式;
(2)求证:△COD△CBF.
(1)∵直线与y=2x双曲线y=
8
x
相交于点A、E,
y=2x
y=
8
x

解得:
x1=2
y1=4
x2=-2
y2=-4

∴A点坐标为:(-2,-4),E点坐标为:(2,4),
∵B点横坐标等于纵坐标的两倍,
∴设B点坐标为:(2x,x),
∴2x•x=8,
即x 2=4,
解得:x1=2,x2=-2(不合题意舍去),
∴B点坐标为:(4,2),
设直线AB的解析式为:y=ax+b,
故将A,B点坐标代入解析式得:
-2a+b=-4
4a+b=2

解得:
a=1
b=-2

故直线AB的解析式为:y=x-2;

(2)过点B作BM⊥OF于点M,
∵直线AB的解析式为:y=x-2,
∴y=0时,x=2,则图象与x轴交于点C(2,0),进而得出图象与y轴交于点(0,2),
∴DO=CO=2,
∴CD=2
2

设直线EB的解析式为:y=cx+d,
将E,B点代入得:
2c+d=4
4c+d=2

解得:
c=-1
d=6

故直线EB的解析式为:y=-x+6,
当y=0,则x=6,
故F点坐标为:(6,0),
则FC=4,
又∵B点坐标为:(4,2),CO=2,
∴MO=4,BM=2,
∴CM=2,MF=2,
∴BC=CF=2
2

CO
BC
=
DO
BF
=
CD
FC
=
2
2
2
=
2
2

∴△COD△CBF.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网