题目内容
【题目】已知,点A,点B分别在线段MN,PQ上∠ACB﹣∠MAC=∠CBP
(1)如图1,求证:MN∥PQ;
(2)分别过点A和点C作直线AG、CH使AG∥CH,以点B为顶点的直角∠DBI绕点B旋转,并且∠DBI的两边分别与直线CH,AG交于点F和点E,如图2试判断∠CFB、∠BEG是之间的数量关系,并证明;
(3)在(2)的条件下,若BD和AE恰好分别平分∠CBP和∠CAN,并且∠ACB=60°,求∠CFB的度数.
【答案】(1)见解析;(2)∠CFB﹣∠BEG=90°,证明见解析;(3)∠CFB=120°.
【解析】
(1)过C作CE∥MN,根据平行线判定和性质证出CE∥PQ;(2)过B作BR∥AG,根据平行线判定和性质证出∠BEG=90°﹣∠RBF=90°﹣(180°﹣∠CFB);(3)过B作BR∥AG,根据平行线判定和性质证出∠NAE=∠AES,∠QBE=∠EBC,根据角平分线定义得:∠CAE=∠AES,再证∠AEB=∠AES+∠BES=∠CAE+∠CBE=,∠AEB=150°,∠BEG=30°.
(1)过C作CE∥MN,
∴∠1=∠MAC,
∵∠2=∠ACB﹣∠1,
∴∠2=∠ACB﹣∠MAC,
∵∠ACB﹣∠MAC=∠CBP,
∴∠2=∠CBP,
∴CE∥PQ,
∴MN∥PQ;
(2)过B作BR∥AG,
∵AG∥CH,
∴BR∥HF,
∴∠BEG=∠EBR,∠RBF+∠CFB=180°,
∵∠EBF=90°,
∴∠BEG=∠EBR=90°﹣∠RBF,
∴∠BEG=90°﹣∠RBF=90°﹣(180°﹣∠CFB),
∴∠CFB﹣∠BEG=90°;
(3)过E作ES∥MN,
∵MN∥PQ,
∴ES∥PQ,
∴∠NAE=∠AES,∠QBE=∠EBC,
∵BD和AE分别平分∠CBP和∠CAN,
∴∠NAE=∠EAC,∠CBD=∠DBP,
∴∠CAE=∠AES,
∵∠EBD=90°,
∴∠EBQ+∠PBD=∠EBC+∠CBD=90°,
∴∠QBE=∠EBC,
∴∠AEB=∠AES+∠BES=∠CAE+∠CBE=,
∵∠ACB=60°,
∴∠AEB=150°,
∴∠BEG=30°,
∵∠CFB﹣∠BEG=90°,
∴∠CFB=120°.