题目内容

【题目】下列命题中正确的个数是(

①过三点可以确定一个圆

②直角三角形的两条直角边长分别是512,那么它的外接圆半径为6.5

③如果两个半径为2厘米和3厘米的圆相切,那么圆心距为5厘米

④三角形的重心到三角形三边的距离相等.

A.1B.2C.3D.4

【答案】A

【解析】

①根据圆的作法即可判断;

②先利用勾股定理求出斜边的长度,然后根据外接圆半径等于斜边的一半即可判断;

③根据圆与圆的位置关系即可得出答案;

④根据重心的概念即可得出答案.

①过不在同一条直线上的三点可以确定一个圆,故错误;

②∵直角三角形的两条直角边长分别是512

∴斜边为 ,

∴它的外接圆半径为,故正确;

③如果两个半径为2厘米和3厘米的圆相切,那么圆心距为5厘米或1厘米,故错误;

④三角形的内心到三角形三边的距离相等,故错误;

所以正确的只有1个,

故选:A

练习册系列答案
相关题目

【题目】(问题)用n2×1矩形,镶嵌一个n矩形,有多少种不同的镶嵌方案?(n矩形表示矩形的邻边是2n

(探究)不妨假设有an种不同的镶嵌方案.为探究an的变化规律,我们采取一般问题特殊化的策略,先从最简单情形入手,再逐次递进,最后猜想得出结论.

探究一:用12×1矩形,镶嵌一个2×1矩形,有多少种不同的镶嵌方案?

如图(1),显然只有1种镶嵌方案.所以,a11

探究二:用22×1矩形,镶嵌一个2×2矩形,有多少种不同的镶嵌方案?

如图(2),显然只有2种镶嵌方案.所以,a22

探究三:用32×1矩形,镶嵌一个2×3矩形,有多少种不同的镶嵌方案?

一类:在探究一每个镶嵌图的右侧再横着镶嵌22×1矩形,有1种镶嵌方案;

二类:在探究二每个镶嵌图的右侧再竖着镶嵌12×1矩形,有2种镶嵌方案;

如图(3).所以,a31+23

探究四:用42×1矩形,镶嵌一个2×4矩形,有多少种不同的镶嵌方案?

一类:在探究二每个镶嵌图的右侧再横着镶嵌22×1矩形,有   种镶嵌方案;

二类:在探究三每个镶嵌图的右侧再竖着镶嵌12×1矩形,有   种镶嵌方案;

所以,a4   

探究五:用52×1矩形,镶嵌一个2×5矩形,有多少种不同的镶嵌方案?

(仿照上述方法,写出探究过程,不用画图)

……

(结论)用n2×1矩形,镶嵌一个n矩形,有多少种不同的镶嵌方案?

(直接写出anan1an2的关系式,不写解答过程).

(应用)用102×1矩形,镶嵌一个2×10矩形,有   种不同的镶嵌方案.

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网