题目内容
【题目】在某市开展的环境创优活动中,某居民小区要在一块靠墙(墙长15米)的空地上修建一个矩形花园ABCD,花园的一边靠墙,另三边用总长为40m的栅栏围成,若设花园平行于墙的一边长为x(m),花园的面积为y(m2).
(1)求y与x之间的函数关系式,并写出自变量x的取值范围;
(2)满足条件的花园面积能达到200m2吗?若能,求出此时x的值,若不能,说明理由;
(3)根据(1)中求得的函数关系式,判断当x取何值时,花园的面积最大,最大面积是多少?
【答案】(1)y=﹣x2+20x(0<x≤15);(2)花园面积不能达到200m2;(3)当x=15时,花园的面积最大,最大面积为187.5m2.
【解析】试题分析:(1)设花园靠墙的一边长为x(m),另一边长为,用面积公式表示矩形面积;
(2)就是已知y=200,解一元二次方程,但要注意检验结果是否符合题意;即结果应该是0<x≤15.
(3)由于0<x≤15,对称轴x=20,即顶点不在范围内,y随x的增大而增大.∴x=15时,y有最大值.
试题解析:(1)根据题意得: ,
即y=﹣x2+20x(0<x≤15);
(2)当y=200时,即﹣x2+20x=200,
解得x1=x2=20>15,
∴花园面积不能达到200m2;
(3)∵y=﹣x2+20x的图象是开口向下的抛物线,对称轴为x=20,
∴当0<x≤15时,y随x的增大而增大.
∴x=15时,y有最大值,
y最大值=﹣×152+20×15=187.5m2
即当x=15时,花园的面积最大,最大面积为187.5m2.
【题目】中华文明,源远流长:中华诗词,寓意深广.为了传承优秀传统文化,我市某校团委组织了一次全校2000名学生参加的“中国诗词大会”海选比赛,赛后发现所有参赛学生的成绩均不低于50分.为了更好地了解本次海选比赛的成绩分布情况,随机抽取了其中200名学生的海选比赛成绩(成绩x取整数,总分100分)作为样本进行整理,得到下列统计图表
组别 | 海选成绩x |
A组 | 50≤x<60 |
B组 | 60≤x<70 |
C组 | 70≤x<80 |
D组 | 80≤x<90 |
E组 | 90≤x<100 |
请根据所给信息,解答下列问题
①图1条形统计图中D组人数有多少?
②在图2的扇形统计图中,记表示B组人数所占的百分比为a%,则a的值为 ,表示C组扇形的圆心角的度数为 度;
③规定海选成绩在90分以上(包括90分)记为“优等”,请估计该校参加这次海选比赛的2000名学生中成绩“优等”的有多少人?