题目内容
【题目】△AOB中,∠AOB=90°,以顶点O为原点,分别以OA、OB所在直线为x轴、y轴建立平面直角坐标系(如图),点A(a,0),B(0,b)满足+|a-2|=0
(1)点A的坐标为 ;点B的坐标为 .
(2)如图①,已知坐标轴上有两动点D、E同时出发,点D从A点出发沿x轴负方向以每秒1个单位长度的速度匀速移动,点E从O点出发以每秒2个单位长度的速度沿y轴正方向移动,点E到达B点时运动结束,AB的中点C的坐标是(1,2),设运动时间为t(t>0)秒,问:是否存在这样的t,使S△OCD=S△OCE?若存在,请求出t的值:若不存在,请说明理由.
(3)如图②,点F是线段AB上一点,满足∠FOA=∠FAO,点G是第二象限中一点,连OG使得∠BOG=∠BOF,点P是线段OB上一动点,连AP交OF于点Q,当点P在线段OB上运动的过程中,的值是否会发生变化?若不变,请求出k的值;若变化,请说明理由.
【答案】(1)(2,0);(0,4);(2)当t=1时,S△OCD=S△OCE;(3).
【解析】
(1)根据非负数的性质分别求出a、b,得到答案;
(2)根据题意用t表示出OE、OD,根据三角形的面积公式列式计算即可;
(3)根据三角形的外角的性质得到∠OPA=∠ABP+∠BAP,证明OG∥AB,根据平行线的性质、三角形的外角性质计算即可.
(1)∵+|a-2|=0
∴b-2a=0,a-2=0,
解得,a=2,b=4,
则点A的坐标为(2,0),点B的坐标为(0,4),
故答案为:(2,0);(0,4);
(2)由题意得,AD=t,OE=2t,
则OD=2-t,
当S△OCD=S△OCE时,×2×(2-t)=×2t×1,
解得,t=1,
∴当t=1时,S△OCD=S△OCE;
(3)∠OPA是△APB的外角,
∴∠OPA=∠ABP+∠BAP,
∵∠AOB=90°,
∴∠BOF+∠FOA=90°,
∵∠BOG=∠BOF,∠FOA=∠FAO,
∴∠GOA+∠BAO=180°,
∴OG∥AB,
∴∠BOG=∠OBA,
∵∠BOG=∠BOF,
∴∠FOB=∠OBA,
∴∠OQA+∠BAP=∠OPA+∠BOF+∠BAP=∠OPA+∠OBA+∠BAP=2∠OPA,
∴.