题目内容
【题目】如图,抛物线与x轴交于点A、B,与y轴交于点C,点O为坐标原点,点D为抛物线顶点,点E在抛物线上,点F在x轴上,四边形OCEF为矩形,且OF=2,EF=3
(1)求抛物线所对应的函数解析式;
(2)求ΔABC的面积。
【答案】(1) ;(2)8.
【解析】试题分析:(1)在矩形OCEF中,已知OF、EF的长,即可得点C、E的坐标,然后利用待定系数法求函数的解析式即可;(2)根据(1)的函数解析式求出A、B、D三点的坐标,以AB为底、D点纵坐标的绝对值为高,可求出△ABD的面积.
试题解析:(1)∵四边形OCEF为矩形,OF=2,EF=3,
∴点C的坐标为(0,3),点E的坐标为(2,3).
把x=0,y=3;x=2,y=3分别代入y=-x2+bx+c中,得
,
解得,
∴抛物线所对应的函数解析式为y=-x2+2x+3;
∵y=-x2+2x+3=-(x-1)2+4,
∴抛物线的顶点坐标为D(1,4),
∴△ABD中AB边的高为4,
令y=0,得-x2+2x+3=0,
解得x1=-1,x2=3,
所以AB=3-(-1)=4,
∴△ABD的面积=×4×4=8.
练习册系列答案
相关题目
【题目】进入六月以来,西瓜出现热卖.佳佳水果超市用760元购进甲、乙两个品种的西瓜,销售完共获利360元,其进价和售价如表:
甲品种 | 乙品种 | |
进价(元/千克) | 1.6 | 1.4 |
售价(元/千克) | 2.4 | 2 |
(1)求佳佳水果超市购进甲、乙两个品种的西瓜各多少千克?
(2)由于销售较好,该超市决定,按进价再购进甲,乙两个品种西瓜,购进乙品种西瓜的重量不变,购进甲品种西瓜的重量是原来的2倍,甲品种西瓜按原价销售,乙品种西瓜让利销售.若两个品种的西瓜售完获利不少于560元,问乙品种西瓜最低售价为多少元?