题目内容
【题目】如图,正方形ABCD中,AB=6,点E在边CD上,且CD=3DE,将△ADE沿AE对折至△AEF,延长EF交边BC于点G,连结AG,CF,则下列结论:①△ABG≌△AFG;②BG=CG;③AG∥CF;④S△EGC=S△AFE;⑤S△FGC=;其中正确的结论有_____.
【答案】①②③④⑤
【解析】
由正方形和折叠的性质得出AF=AB,∠B=∠AFG=90°,由HL即可证明Rt△ABG≌Rt△AFG,得出①正确,设BG=x,则CG=BC-BG=6-x,GE=GF+EF=BG+DE=x+2,由勾股定理求出x=3,得出②正确;由等腰三角形的性质和外角关系得出∠AGB=∠FCG,证出平行线,得出③正确;分别求出△EGC,△AEF的面积,可以判断④,由
,可求出△FGC的面积,故此可对⑤做出判断.
解:解:∵四边形ABCD是正方形,
∴AB=AD=DC=6,∠B=D=90°,
∵CD=3DE,
∴DE=2,
∵△ADE沿AE折叠得到△AFE,
∴DE=EF=2,AD=AF,∠D=∠AFE=∠AFG=90°,
∴AF=AB,
∵在Rt△ABG和Rt△AFG中,
,
∴Rt△ABG≌Rt△AFG(HL).
∴①正确;
∵Rt△ABG≌Rt△AFG,
∴BG=FG,∠AGB=∠AGF.
设BG=x,则CG=BC-BG=6-x,GE=GF+EF=BG+DE=x+2.
在Rt△ECG中,由勾股定理得:CG2+CE2=EG2.
∵CG=6-x,CE=4,EG=x+2,
∴(6-x)2+42=(x+2)2,解得:x=3.
∴BG=GF=CG=3.
∴②正确;
∵CG=GF,
∴∠CFG=∠FCG.
∵∠BGF=∠CFG+∠FCG,∠BGF=∠AGB+∠AGF,
∴∠CFG+∠FCG=∠AGB+∠AGF.
∵∠AGB=∠AGF,∠CFG=∠FCG,
∴∠AGB=∠FCG.
∴AG∥CF.
∴③正确;
∵S△EGC=×3×4=6,S△AEF=S△ADE=×6×2=6,
∴S△EGC=S△AFE;
∴④正确,
∵△CFG和△CEG中,分别把FG和GE看作底边,
则这两个三角形的高相同.
∴,
∵S△GCE=6,
∴S△CFG=×6=3.6,
∴⑤正确;
故答案为①②③④⑤.
【题目】在作二次函数y1=ax2+bx+c与一次函数y2=kx+m的图象时,先列出下表:
x | … | ﹣1 | 0 | 1 | 2 | 3 | 4 | 5 | … |
y1 | … | 0 | ﹣3 | ﹣4 | ﹣3 | 0 | 5 | 12 | … |
y2 | … | 0 | 2 | 4 | 6 | 8 | 10 | 12 | … |
请你根据表格信息回答下列问题,
(1)二次函数y1=ax2+bx+c的图象与y轴交点坐标为;
(2)当y1>y2时,自变量x的取值范围是;
(3)请写出二次函数y1=ax2+bx+c的三条不同的性质.