题目内容
【题目】在作二次函数y1=ax2+bx+c与一次函数y2=kx+m的图象时,先列出下表:
x | … | ﹣1 | 0 | 1 | 2 | 3 | 4 | 5 | … |
y1 | … | 0 | ﹣3 | ﹣4 | ﹣3 | 0 | 5 | 12 | … |
y2 | … | 0 | 2 | 4 | 6 | 8 | 10 | 12 | … |
请你根据表格信息回答下列问题,
(1)二次函数y1=ax2+bx+c的图象与y轴交点坐标为;
(2)当y1>y2时,自变量x的取值范围是;
(3)请写出二次函数y1=ax2+bx+c的三条不同的性质.
【答案】
(1)(0,﹣3)
(2)当x<﹣1或x>5时,二次函数的值大于一次函数的值
(3)解:该函数的图象开口向上;当x=1时,函数有最大值;当x<1时,y随x的增大而减小,当x≥1时,y随x的增大而增大;顶点坐标为(1,﹣4);对称轴为直线x=1.
【解析】(1)令x=0,求得y的数值,确定与y轴交点坐标即可;(2)先利用待定系数法求出二次函数与一次函数的解析式,求出两函数图象的交点,进而可得出结论;(3)利用二次函数的性质:开口方向,对称轴,增减性直接得出答案即可.
解:(1)二次函数y1=ax2+bx+c的图象与y轴交点坐标为(0,﹣3);(2)由题意得,
,
解得 .
∴二次函数的解析式为y=x2﹣2x﹣3=(x﹣1)2﹣4.
∵一次函数y2=kx+m的图象过点(﹣1,0),(0,2),
∴ ,
解得 .
∴一次函数的解析式为y=2x+2,
如图所示,
当x<﹣1或x>5时,二次函数的值大于一次函数的值.
【考点精析】解答此题的关键在于理解二次函数的性质的相关知识,掌握增减性:当a>0时,对称轴左边,y随x增大而减小;对称轴右边,y随x增大而增大;当a<0时,对称轴左边,y随x增大而增大;对称轴右边,y随x增大而减小.
【题目】九(2)班组织了一次朗读比赛,甲、乙两队各10人的比赛成绩(10分制)如下表(单位:分):
甲 | 7 | 8 | 9 | 7 | 10 | 10 | 9 | 10 | 10 | 10 |
乙 | 10 | 8 | 7 | 9 | 8 | 10 | 10 | 9 | 10 | 9 |
(1)甲队成绩的中位数是分,乙队成绩的众数是分;
(2)计算乙队成绩的平均数和方差;
(3)已知甲队成绩的方差是1.4分2 , 则成绩较为整齐的是队.
【题目】王老师为了从平时在班级里数学比较优秀的甲、乙两位同学中选拔一人参加“全国初中数学希望杯竞赛”,对两位同学进行了辅导,并在辅导期间进行了5次测验,两位同学测验成绩得分情况如图所示:
利用表中提供的数据,解答下列问题:
(1)根据右图分别写出甲、乙五次的成绩:
甲: ;乙: .
(2)填写完成下表:
平均成绩 | 中位数 | 众数 | 方差 | |
甲 | 无 | 4 | ||
乙 | 13 |
(3)请你根据上面的信息,运用所学的统计知识,帮助王老师做出选择,并简要说明理由.