题目内容
【题目】已知三点A(0,0),B(5,12),C(14,0),则△ABC内心的坐标为____.
【答案】(6,4).
【解析】
作BQ⊥AC于点Q,由题意可得BQ=12,根据勾股定理分别求出BC、AB的长,继而利用三角形面积,可得△OAB内切圆半径,过点P作PD⊥AC于D,PF⊥AB于F,PE⊥BC于E,设AD=AF=x,则CD=CE=14-x,BF=13-x,BE=BC-CE=15-(14-x)=1+x,由BF=BE可得13-x=1+x,解之求出x的值,从而得出点P的坐标,即可得出答案.
解:如图,过点B作BQ⊥AC于点Q,
则AQ=5,BQ=12,
∴AB=,CQ=AC-AQ=9,
∴BC=
设⊙P的半径为r,根据三角形的面积可得:r=
过点P作PD⊥AC于D,PF⊥AB于F,PE⊥BC于E,
设AD=AF=x,则CD=CE=14-x,BF=13-x,
∴BE=BC-CE=15-(14-x)=1+x,
由BF=BE可得13-x=1+x,
解得:x=6,
∴点P的坐标为(6,4),
故答案为:(6,4).
练习册系列答案
相关题目