题目内容
【题目】(1)如图,已知AB、CD是大圆⊙O的弦,AB=CD,M是AB的中点.连接OM,以O为圆心,OM为半径作小圆⊙O.判断CD与小圆⊙O的位置关系,并说明理由;
(2)已知⊙O,线段MN,P是⊙O外一点.求作射线PQ,使PQ被⊙O截得的弦长等于MN.
(不写作法,但保留作图痕迹)
【答案】(1)相切,证明见解析;(2)答案见解析
【解析】
(1)过点O作ON⊥CD,连接OA,OC,根据垂径定理及其推论可得∠AMO=∠ONC=90°,AM=CN,从而求证△AOM≌△CON,从而判定CD与小圆O的位置关系;(2)在圆O上任取一点A,以A为圆心,MN为半径画弧,交圆O于点B,过点O做AB的垂线,交AB于点C,然后以点O为圆心,OC为半径画圆,连接PO,取PO的中点D,以点D为圆心,OD为半径画圆,交以OC为半径的圆于点E,连接PE,交以OA为半径的圆于F,H两点,FH即为所求.
解:(1)过点O作ON⊥CD,连接OA,OC
∵AB、CD是大圆⊙O的弦,AB=CD,M是AB的中点,ON⊥CD
∴∠AMO=∠ONC=90°,AM=,CN,
∴AM=CN
又∵OA=OC
∴△AOM≌△CON
∴ON=OM
∴CD与小圆O相切
(2)如图FH即为所求
【题目】重庆八中建校80周年,在体育、艺术、科技等方面各具特色,其中排球选修课是体育特色项目之一.体育组老师为了了解初一年级学生的训练情况,随机抽取了初一年级部分学生进行1分钟垫球测试,并将这些学生的测试成绩(即1分钟的垫球个数,且这些测试成绩都在60~180范围内)分段后给出相应等级,具体为:测试成绩在60~90范围内的记为D级(不包括90),90~120范围内的记为C级(不包括120),120~150范围内的记为B级(不包括150),150~180范围内的记为A级.现将数据整理绘制成如下两幅不完整的统计图,其中在扇形统计图中A级对应的圆心角为90°,请根据图中的信息解答下列问题:
(1)在这次测试中,一共抽取了 名学生,并补全频数分布直方图:在扇形统计图中,D级对应的圆心角的度数为 度.
(2)王攀同学在这次测试中1分钟垫球140个.他为了了解自己垫球个数在年级排名的大致情况,他把成绩为B等的全部同学1分钟垫球人数做了统计,其统计结果如表:
成绩(个) | 120 | 125 | 130 | 135 | 140 | 145 |
人数(频数) | 2 | 8 | 3 | 10 | 9 | 8 |
(垫球个数计数原则:120<垫球个数≤125记为125,125<垫球个数≤130记为130,依此类推)请你估计王攀同学的1分钟垫球个数在年级排名的大致情况.