题目内容
如图,在直角梯形ABCD中,AB∥DC,∠ABC=90°,AB=2DC,对角线AC⊥BD,垂足为F,过点F作EF∥AB,交AD于点E,CF=4cm.
⑴求证:四边形ABFE是等腰梯形;
⑵求AE的长.
⑴求证:四边形ABFE是等腰梯形;
⑵求AE的长.
⑴证明略;⑵AE=BF=.
(1)过点D作DM⊥AB,根据已知可求得四边形BCDM为矩形,从而得到DC=MB,因为AB=2DC,从而推出△ABD是等腰三角形,从而得到∠DAB=∠DBA,因为EF∥AB,AE不平行FB,所以AEFB为梯形,从而根据同一底上的两个角相等的梯形是等腰梯形得证;
(2)由已知可得到△DCF∽△BAF,根据相似三角形的对应边成比例,可得到AF的长,再根据△BCF∽△ACB,得到BF2=CF•AF,从而求得BF的长,由第一问已证得BF=AE,所以就求得了AE的长
(2)由已知可得到△DCF∽△BAF,根据相似三角形的对应边成比例,可得到AF的长,再根据△BCF∽△ACB,得到BF2=CF•AF,从而求得BF的长,由第一问已证得BF=AE,所以就求得了AE的长
练习册系列答案
相关题目