题目内容
某市经济开发区建有
三个食品加工厂,这三个工厂和开发区
处的自来水厂正好在一个矩形的四个顶点上,它们之间有公路相通,且
米,
米.自来水公司已经修好一条自来水主管道
两厂之间的公路与自来水管道交于
处,
米.若自来水主管道到各工厂的自来水管道由各厂负担,每米造价800元.

(1)要使修建自来水管道的造价最低,这三个工厂的自来水管道路线应怎样设计?并在图形中画出;
(2)求出各厂所修建的自来水管道的最低的造价各是多少元?
(1)要使修建自来水管道的造价最低,这三个工厂的自来水管道路线应怎样设计?并在图形中画出;
(2)求出各厂所修建的自来水管道的最低的造价各是多少元?
解:(1)过
分别作
的垂线段
,交
于
,
即为所求的造价最低的管道路线.图形如图所示.
(2)(法一)
(米),
=1500(米),
∵
∽
,
得到:
.
∴
(米).
∵
∽
,
得到
,
∴
(米),
∵
∽
,
∴
,
∴
(米),
所以,
三厂所建自来水管道的最低造价分别是
720×800=576000(元),300×800=240000(元),1020×800=816000(元)
法二(设
,利用三角函数可求得
的长)
(2)(法一)
∵
得到:
∴
∵
得到
∴
∵
∴
∴
所以,
720×800=576000(元),300×800=240000(元),1020×800=816000(元)
法二(设
(1)根据“垂线段最短”即可画出使修建自来水管道的造价最低时,这三个工厂的自来水管道路线;
(2)根据勾股定理和直角三角形的面积公式求得BH的长,根据相似三角形的对应边的比相等分别求得CF,DG的长,再根据每米造价800元求得价钱.
(2)根据勾股定理和直角三角形的面积公式求得BH的长,根据相似三角形的对应边的比相等分别求得CF,DG的长,再根据每米造价800元求得价钱.
练习册系列答案
相关题目