题目内容

某市经济开发区建有三个食品加工厂,这三个工厂和开发区处的自来水厂正好在一个矩形的四个顶点上,它们之间有公路相通,且米,米.自来水公司已经修好一条自来水主管道两厂之间的公路与自来水管道交于处,米.若自来水主管道到各工厂的自来水管道由各厂负担,每米造价800元.

(1)要使修建自来水管道的造价最低,这三个工厂的自来水管道路线应怎样设计?并在图形中画出;
(2)求出各厂所修建的自来水管道的最低的造价各是多少元?
解:(1)过分别作的垂线段,交
即为所求的造价最低的管道路线.图形如图所示.  
(2)(法一)(米),
=1500(米),    

得到:
(米).

得到
(米),


(米),
所以,三厂所建自来水管道的最低造价分别是
720×800=576000(元),300×800=240000(元),1020×800=816000(元)
法二(设,利用三角函数可求得的长)
(1)根据“垂线段最短”即可画出使修建自来水管道的造价最低时,这三个工厂的自来水管道路线;
(2)根据勾股定理和直角三角形的面积公式求得BH的长,根据相似三角形的对应边的比相等分别求得CF,DG的长,再根据每米造价800元求得价钱.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网