题目内容
【题目】如图,已知:在平行四边形ABCD中,点E,F,G,H分别在边AB,BC,CD,DA上,AE=CG,AH=CF,且EG平分∠HEF.求证:
(1)△AEH≌△CGF;
(2)四边形EFGH是菱形.
【答案】
(1)证明:如图,
∵四边形ABCD是平行四边形,
∴∠A=∠C,
在△AEH与△CGF中,
,
∴△AEH≌△CGF(SAS)
(2)∵四边形ABCD是平行四边形,
∴AB=CD,AD=BC,∠B=∠D.
又∵AE=CG,AH=CF,
∴BE=DG,BF=DH,
在△BEF与△DGH中,
∴△BEF≌△DGH(SAS),
∴EF=GH.
又由(1)知,△AEH≌△CGF,
∴EH=GF,
∴四边形EFGH是平行四边形,
∴HG∥EF,
∴∠HGE=∠FEG,
∵EG平分∠HEF,
∴∠HEG=∠FEG,
∴∠HEG=∠HGE,
∴HE=HG,
∴四边形EFGH是菱形.
【解析】(1)由已知结合图形容易利用SAS证明两个三角形全等;
(2)先证明四边形EFGH是平行四边形,再证明一组邻边相等,利用平行线的性质和EG平分∠HEF可证得∠HEG=∠HGE,从而得到HE=HG,即可得证.
【题目】某校计划成立学生社团,要求每一位学生都选择一个社团,为了了解学生对不同社团的喜爱情况,学校随机抽取了部分学生进行“我最喜爱的一个学生社团”问卷调查,规定每人必须并且只能在“文学社团”、“科学社团”、“书画社团”、“体育社团”和“其他”五项中选择一项,并将统计结果绘制了如下两个不完整的统计图表.
社团名称 | 人数 |
文学社团 | 18 |
科技社团 | a |
书画社团 | 45 |
体育社团 | 72 |
其他 | b |
请解答下列问题:
(1)a= , b=;
(2)在扇形统计图中,“书画社团”所对应的扇形圆心角度数为;
(3)若该校共有3000名学生,试估计该校学生中选择“文学社团”的人数.