题目内容

【题目】在四边形ABCD中,对角线AC、BD相交于点O,将△COD绕点O按逆时针方向旋转得到△C1OD1 , 旋转角为θ(0°<θ<90°),连接AC1、BD1 , AC1与BD1交于点P.
(1)如图1,若四边形ABCD是正方形.
①求证:△AOC1≌△BOD1
②请直接写出AC1 与BD1的位置关系.

(2)如图2,若四边形ABCD是菱形,AC=5,BD=7,设AC1=kBD1 . 判断AC1与BD1的位置关系,说明理由,并求出k的值.

(3)如图3,若四边形ABCD是平行四边形,AC=5,BD=10,连接DD1 , 设AC1=kBD1 . 请直接写出k的值和AC12+(kDD12的值.

【答案】
(1)

①证明:如图1,

∵四边形ABCD是正方形,

∴OC=OA=OD=OB,AC⊥BD,

∴∠AOB=∠COD=90°,

∵△COD绕点O按逆时针方向旋转得到△C1OD1

∴OC1=OC,OD1=OD,∠COC1=∠DOD1

∴OC1=OD1,∠AOC1=∠BOD1=90°+∠AOD1

在△AOC1和△BOD1

∴△AOC1≌△BOD1(SAS);

②AC1⊥BD1


(2)

解:AC1⊥BD1

理由如下:如图2,

∵四边形ABCD是菱形,

∴OC=OA= AC,OD=OB= BD,AC⊥BD,

∴∠AOB=∠COD=90°,

∵△COD绕点O按逆时针方向旋转得到△C1OD1

∴OC1=OC,OD1=OD,∠COC1=∠DOD1

∴OC1=OA,OD1=OB,∠AOC1=∠BOD1

∴△AOC1∽△BOD1

∴∠OAC1=∠OBD1

又∵∠AOB=90°,

∴∠OAB+∠ABP+∠OBD1=90°,

∴∠OAB+∠ABP+∠OAC1=90°,

∴∠APB=90°

∴AC1⊥BD1

∵△AOC1∽△BOD1

= = = =

∴k=


(3)

解:如图3,与(2)一样可证明△AOC1∽△BOD1

= = =

∴k=

∵△COD绕点O按逆时针方向旋转得到△C1OD1

∴OD1=OD,

而OD=OB,

∴OD1=OB=OD,

∴△BDD1为直角三角形,

在Rt△BDD1中,

BD12+DD12=BD2=100,

∴(2AC12+DD12=100,

∴AC12+(kDD12=25.


【解析】(1)①如图1,根据正方形的性质得OC=OA=OD=OB,AC⊥BD,则∠AOB=∠COD=90°,再根据旋转的性质得OC1=OC,OD1=OD,∠COC1=∠DOD1 , 则OC1=OD1 , 利用等角的补角相等得∠AOC1=∠BOD1 , 然后根据“SAS”可证明△AOC1≌△BOD1;②由∠AOB=90°,则∠OAB+∠ABP+∠OBD1=90°,所以∠OAB+∠ABP+∠OAC1=90°,则∠APB=90°所以AC1⊥BD1;(2)如图2,根据菱形的性质得OC=OA= AC,OD=OB= BD,AC⊥BD,则∠AOB=∠COD=90°,再根据旋转的性质得OC1=OC,OD1=OD,∠COC1=∠DOD1 , 则OC1=OA,OD1=OB,利用等角的补角相等得∠AOC1=∠BOD1 , 加上 ,根据相似三角形的判定方法得到△AOC1∽△BOD1 , 得到∠OAC1=∠OBD1 , 由∠AOB=90°得∠OAB+∠ABP+∠OBD1=90°,则∠OAB+∠ABP+∠OAC1=90°,则∠APB=90°,所以AC1⊥BD1;然后根据相似比得到 = = = ,所以k= ;(3)与(2)一样可证明△AOC1∽△BOD1 , 则 = = = ,所以k= ;根据旋转的性质得OD1=OD,根据平行四边形的性质得OD=OB,则OD1=OB=OD,于是可判断△BDD1为直角三角形,根据勾股定理得BD12+DD12=BD2=100,所以(2AC12+DD12=100,于是有AC12+(kDD12=25.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网