题目内容

【题目】如图,在圆心角为90°的扇形OAB中,半径OA=2cm,C为 的中点,D、E分别是OA、OB的中点,则图中阴影部分的面积为cm2

【答案】( π+
【解析】解:连结OC,过C点作CF⊥OA于F,
∵半径OA=2cm,C为 的中点,D、E分别是OA、OB的中点,
∴OD=OE=1cm,OC=2cm,∠AOC=45°,
∴CF=
∴空白图形ACD的面积=扇形OAC的面积﹣三角形OCD的面积
= ×
= π﹣ (cm2
三角形ODE的面积= OD×OE= (cm2),
∴图中阴影部分的面积=扇形OAB的面积﹣空白图形ACD的面积﹣三角形ODE的面积
= ﹣( π﹣ )﹣
= π+ (cm2).
故图中阴影部分的面积为( π+ )cm2
故答案为:( π+ ).
连结OC,过C点作CF⊥OA于F,先根据空白图形ACD的面积=扇形OAC的面积﹣三角形OCD的面积,求得空白图形ACD的面积,再根据三角形面积公式得到三角形ODE的面积,再根据图中阴影部分的面积=扇形OAB的面积﹣空白图形ACD的面积﹣三角形ODE的面积,列式计算即可求解.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网