题目内容
【题目】将矩形ABCD按如图所示的方式折叠,BE,EG,FG为折痕,若顶点A,C,D都落在点O处,且点B,O,G在同一条直线上,同时点E,O,F在另一条直线上,则的值为( )
A.B.C.D.
【答案】B
【解析】
由折叠可得,E,G分别为AD,CD的中点,设CD=2a,AD=2b,根据Rt△BCG中,CG2+BC2=BG2,可得即a2+(2b)2=(3a)2,进而得出的值.
由折叠可得,AE=OE=DE,CG=OG=DG,
∴E,G分别为AD,CD的中点,
设CD=2a,AD=2b,则AB=2a=OB,DG=OG=CG=a,BG=3a,BC=AD=2b,
∵∠C=90°,
∴Rt△BCG中,CG2+BC2=BG2,
即a2+(2b)2=(3a)2,
∴b2=2a2,
即b=a,
∴=,
∴的值为,
故选:B.
【题目】攀枝花得天独厚,气候宜人,农产品资源极为丰富,其中晚熟芒果远销北上广等大城市.某水果店购进一批优质晚熟芒果,进价为10元/千克,售价不低于15元/千克,且不超过40元/每千克,根据销售情况,发现该芒果在一天内的销售量(千克)与该天的售价(元/千克)之间的数量满足如下表所示的一次函数关系.
销售量(千克) | … | 32.5 | 35 | 35.5 | 38 | … |
售价(元/千克) | … | 27.5 | 25 | 24.5 | 22 | … |
(1)某天这种芒果售价为28元/千克.求当天该芒果的销售量
(2)设某天销售这种芒果获利元,写出与售价之间的函数关系式.如果水果店该天获利400元,那么这天芒果的售价为多少元?
【题目】某书店以元的价格购进一批科普书进行销售,物价局根据市场行情规定,销售单价不低于元且不高于元.在销售中发现,该科普书的每天销售数量(本)与销售单价(元)之间存在某种函数关系,对应如下:
销售单价(元) | |||||
销售数量(本) |
(1)用你所学过的函数知识,求出与之间的函数关系式;
(2)请问该科普书每天利润(元)的最大值是多少?
(3)如果该科普书每天利润必须不少于元,试求出每天销售数量最少为多少本?
【题目】某便利店的咖啡单价为10元/杯,为了吸引顾客,该店共推出了三种会员卡,如下表:
会员卡类型 | 办卡费用/元 | 有效期 | 优惠方式 |
A类 | 40 | 1年 | 每杯打九折 |
B类 | 80 | 1年 | 每杯打八折 |
C类 | 130 | 1年 | 一次性购买2杯,第二杯半价 |
例如,购买A类会员卡,1年内购买50次咖啡,每次购买2杯,则消费元.若小玲1年内在该便利店购买咖啡的次数介于75~85次之间,且每次购买2杯,则最省钱的方式为( )
A.购买A类会员卡B.购买B类会员卡
C.购买C类会员卡D.不购买会员卡