题目内容
【题目】攀枝花得天独厚,气候宜人,农产品资源极为丰富,其中晚熟芒果远销北上广等大城市.某水果店购进一批优质晚熟芒果,进价为10元/千克,售价不低于15元/千克,且不超过40元/每千克,根据销售情况,发现该芒果在一天内的销售量(千克)与该天的售价(元/千克)之间的数量满足如下表所示的一次函数关系.
销售量(千克) | … | 32.5 | 35 | 35.5 | 38 | … |
售价(元/千克) | … | 27.5 | 25 | 24.5 | 22 | … |
(1)某天这种芒果售价为28元/千克.求当天该芒果的销售量
(2)设某天销售这种芒果获利元,写出与售价之间的函数关系式.如果水果店该天获利400元,那么这天芒果的售价为多少元?
【答案】(1)芒果售价为28元/千克时,当天该芒果的销售量为32千克;(2)这天芒果的售价为20元
【解析】
(1)用待定系数求出一次函数解析式,再代入自变量的值求得函数值;
(2)根据利润=销量×(售价成本),列出m与x的函数关系式,再由函数值求出自变量的值.
解:(1)设该一次函数解析式为
则,解得:
∴()
∴当时,,
∴芒果售价为28元/千克时,当天该芒果的销售量为32千克
(2)由题易知,
当时,则
整理得:
解得:,
∵
∴
所以这天芒果的售价为20元
【题目】如图,在矩形ABCD中,AB=1,BC=3,AC和BD交于点O,点E是边BC上的动点(不与点B,C重合),连接EO并延长交AD于点F,连接AE,若△AEF是等腰三角形,则DF的长为_____.
【题目】如图,是半圆的直径,P是半圆与直径所围成的图形的外部的一定点,D是直径上一动点,连接并延长,交半圆于点C,连接.已知,设两点间的距离为,两点之间的距离为两点之间的距离为.
小明根据学习函数的经验,分别对函数随自变量x的变化而变化的规律进行了探究.
下面是小明的探究过程,请补充完整:
(1)按照下表自变量x的值进行取点、画图、测量,分别得到与x的几组对应值;
0 | 1 | 2 | 3 | 4 | 5 | 6 | |
0 | 0.47 | 1.31 | 5.02 | 5.91 | 6 | ||
6 | 5.98 | 5.86 | 5.26 | 3.29 | 1.06 | 0 |
(2)在同一平面直角坐标系中,描出补全后的表中各组数值所对应的点,,并画出函数的图象;
(3)结合函数图象,解决问题:当有一个角的正弦值为时,的长约为_____cm.