题目内容
如图,不等长的两对角线AC、BD相交于O点,且将四边形ABCD分成甲、乙、丙、丁四个三角形.若OA:OC=OB:OD=1:2,则此四个三角形的关系,下列叙述何者正确( )
A.甲丙相似,乙丁相似 |
B.甲丙相似,乙丁不相似 |
C.甲丙不相似,乙丁相似 |
D.甲丙不相似,乙丁不相似 |
在△OAB和△OCD中,OA:OC=OB:OD,又∠AOB=∠COD
∴△OAB∽△OCD
即甲丙相似;
无法证明△OAD相似△OCB,乙丁不相似.
故选B.
∴△OAB∽△OCD
即甲丙相似;
无法证明△OAD相似△OCB,乙丁不相似.
故选B.
练习册系列答案
相关题目