题目内容

如图,不等长的两对角线AC、BD相交于O点,且将四边形ABCD分成甲、乙、丙、丁四个三角形.若OA:OC=OB:OD=1:2,则此四个三角形的关系,下列叙述何者正确(  )
A.甲丙相似,乙丁相似
B.甲丙相似,乙丁不相似
C.甲丙不相似,乙丁相似
D.甲丙不相似,乙丁不相似

在△OAB和△OCD中,OA:OC=OB:OD,又∠AOB=∠COD
∴△OAB△OCD
即甲丙相似;
无法证明△OAD相似△OCB,乙丁不相似.
故选B.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网