题目内容
【题目】在中,,是边上的一点(不与点重合),边上点在点的右边且,点关于直线的对称点为,连接.
(1)如图1,
①依题意补全图1;
②求证:;
(2)如图2,,用等式表示线段,,之间的数量关系,并证明.
【答案】(1)①依题意补全图形,见解析;②见解析;(2)线段之间的数量关系是.证明见解析.
【解析】
(1)①根据要求画出图形即可解决;②:连接,根据对称可求出,即可得出结果;
(2)连接,由(1)②,可得,在中,由勾股定理,得,即可得到结果.
(1)①依题意补全图形,如图1.
②证明:连接,如图2.
,
.
点F与点D关于直线对称,
,.
.
又,
.
.
(2)线段之间的数量关系是.
证明:连接,如图3.
,
.
由(1)②,可得.
在中,由勾股定理,得.
.
【题目】为了庆祝中华人民共和国成立70周年,某市决定开展“我和祖国共成长”主题演讲比赛,某中学将参加本校选拔赛的40名选手的成绩(满分为100分,得分为正整数且无满分,最低为75分)分成五组,并绘制了下列不完整的统计图表.
分数段 | 频数 | 频率 |
74.5~79.5 | 2 | 0.05 |
79.5~84.5 | m | 0.2 |
84.5~89.5 | 12 | 0.3 |
89.5~94.5 | 14 | n |
94.5~99.5 | 4 | 0.1 |
(1)表中m=__________,n=____________;
(2)请在图中补全频数直方图;
(3)甲同学的比赛成绩是40位参赛选手成绩的中位数,据此推测他的成绩落在_________分数段内;
(4)选拔赛中,成绩在94.5分以上的选手,男生和女生各占一半,学校从中随机确定2名选手参加全市决赛,请用列举法或树状图法求恰好是一名男生和一名女生的概率.
【题目】在抗击新冠肺炎疫情期间,老百姓越来越依赖电商渠道获取必要的生活资料.小石经营的水果店也适时加入了某电商平台,并对销售的水果中的部分(如下表)进行促销:参与促销的水果免配送费且一次购买水果的总价满128元减元.每笔订单顾客网上支付成功后,小石会得到支付款的80%.
参与促销水果 | |
水果 | 促销前单价 |
苹果 | 58元/箱 |
耙耙柑 | 70元/箱 |
车厘子 | 100元/箱 |
火龙果 | 48元/箱 |
(1)当时,某顾客一次购买苹果和车厘子各1箱,需要支付_____元,小石会得到______元;
(2)在促销活动中,为保障小石每笔订单所得到的金额不低于促销前总价的七折,则的最大值为_____.