题目内容
【题目】如图,在四边形中,.点从点出发,沿方向匀速运动,速度为同时,点从点出发,沿方向匀速运动,速度为.过点作交于点,连接,交于点.设运动时间为.解答下列问题:
(1)当为何值时,?
(2)设五边形的面积为, 求与的函数关系式;
(3)连接.是否存在某一时刻, 使点在的垂直平分线上,若存在,求出的值;若不存在,说明理由.
【答案】(1)当为时,2;(2);(3)存在,当为时,点在的垂直平分线上.
【解析】
(1)如图1,作辅助线,构建平行线,证明QE∥DG,得,则,得EC=3t,由BE=2EC解方程可得t的值;
(2)如图2,作辅助线,构建两个三角形的高线FM,FH,先证明四边形MHCD是矩形,得MH=CD=8,HM⊥AD,证明△APF∽△BEF,列比例式可得HF=8-2t,最后利用面积差可得:y=S四边形ABCD-S△EFB-S△ECQ,代入面积公式可得结论;
(3)如图3,作辅助线,构建直角三角形,表示各边的长,利用勾股定理计算PE=10,PN=6,由△APF∽△BEF,得,表示PF和EF的长,利用勾股定理计算PM、MD的长,若点F在DE的垂直平分线上,则FE=FD,列方程可得t的值.
过点作,交于点
四边形是平行四边形
解得:
当为时,2
过点作,交为,交为
,
四边形是矩形
与的函数关系式是
过点作垂足为,则
若点在的垂直平分线上
则时,
当为时,点在的垂直平分线上。
【题目】某土产公司组织20辆汽车装运甲、乙、丙三种土特产共120吨去外地销售按计划20辆车都要装运,每辆汽车只能装运同一种土特产,且必须装满,根据下表提供的信息,解答以下问题
土特产种类 | 甲 | 乙 | 丙 |
每辆汽车运载量(吨) | 8 | 6 | 5 |
每吨土特产获利(百元) | 12 | 16 | 10 |
(1)设装运甲种土特产的车辆数为x,装运乙种土特产的车辆数为y,求y与x之间的函数关系式;
(2)如果装运每种土特产的车辆都不少于3辆,那么车辆的安排方案有几种?并写出每种安排方案;
(3)若要使此次销售获利最大,应采用(2)中哪种安排方案?并求出最大利润的值