题目内容
【题目】为了测量竖直旗杆AB的高度,某综合实践小组在地面D处竖直放置标杆CD,并在地面上水平放置一个平面镜E,使得B,E,D在同一水平线上(如图所示).该小组在标杆的F处通过平面镜E恰好观测到旗杆顶A(此时∠AEB=∠FED),在F处测得旗杆顶A的仰角为45°,平面镜E的俯角为67°,测得FD=2.4米.求旗杆AB的高度约为多少米?(结果保留整数,参考数据:sin67°≈,cos67°≈,tan67°≈)
【答案】旗杆AB的高度约为6米.
【解析】
作FG⊥AB于G,设AB为x米,根据正切的定义求出DE、BE,根据图形列式计算,得到答案.
解:作FG⊥AB于G,
设AB为x米,
由题意得,四边形FDBG为矩形,
∴BG=DF=2.4,FG=BD,
∵FG∥BD,
∴∠FED=∠GFE=67°,
在Rt△EDF中,tan∠FED=,
,
在Rt△AFG中,∠AFG=45°,
∴FG=AG=x﹣2.4,
在Rt△AEB中,tan∠AEB=,即,
由题意得,x﹣2.4=1+x
解得,x≈6,
答:旗杆AB的高度约为6米.
【题目】下表是小安填写的数学实践活动报告的部分内容
题 目 | 测量铁塔顶端到地面的高度 | |
测量目标示意图 | ||
相关数据 | CD=20m,ɑ=45°,β=52° |
求铁塔的高度FE(结果精确到1米)(参考数据:sin52°≈0.79, cos52°≈0.62,tan52°≈1.28)
【题目】某校为调查“停课不停学”期间九年级学生平均每天上网课时长,随机抽取了名九年级学生做网络问卷调查.共四个选项:小时以下)、小时)、小时), 小时以上),每人只能选一
项.并将调查结果绘制成如下不完整的统计表和统计图.
被调查学生平均每天上网课时间统计表
时长 | 所占百分比 |
合计 |
根据以上信息,解答下列问题:
, ,
补全条形统计图;
该校有九年级学生名,请你估计仝校九年级学生平均每天上网课时长在小时及以上的共多少名;
在被调查的对象中,平均每天观看时长超过小时的,有名来自九班,名来自九班,其余都来自九班,现教导处准备从选项中任选两名学生进行电话访谈,请用列表法或画树状图的方法求所抽取的名学生恰好来自同一个班级的概率.
【题目】在水果销售旺季,某水果店购进一优质水果,进价为20元/千克,售价不低于20元/千克,且不超过32元/千克,根据销售情况,发现该水果一天的销售量y(千克)与该天的售价x(元/千克)满足如下表所示的一次函数关系.
销售量y(千克) | … | 34.8 | 32 | 29.6 | 28 | … |
售价x(元/千克) | … | 22.6 | 24 | 25.2 | 26 | … |
(1)某天这种水果的售价为23.5元/千克,求当天该水果的销售量.
(2)如果某天销售这种水果获利150元,那么该天水果的售价为多少元?