题目内容
【题目】如图,在矩形中,,,是上的一个动点.
(1)如图1,连接,是对角线的中点,连接.当时,求的长;
(2)如图2,连接,过点作交于点,连接,与交于点.当平分时,求的长;
(3)如图3,连接,点在上,将矩形沿直线折叠,折叠后点落在上的点处,过点作于点,与交于点,且.
①求的值;
②连接,与是否相似?请说明理由.
【答案】(1);(2);(3)①;②相似,理由见解析.
【解析】
(1)先求出BD,进而求出OD=OB=OA,再判断出△ODE∽△ADO,即可得出结论;
(2)先判断出△AEF≌△DCE,进而求出BF=1,再判断出△CHG∽△CBF,进而求出,最后用勾股定理即可得出结论;
(3)①先求出EC=5,再求出D'C=1,根据勾股定理求出DH=,CH=,再判断出△EMN∽△EHD,得出,△ED'M∽△ECH,得出,进而得出,即可得出结论;
②先判断出∠MD'H=∠NED',进而判断出∠MD'H=∠ECB,即可得出,即可.
(1)如图1,连接,在矩形中,,,
在中,根据勾股定理得,,
∵是中点,
∴,
∴,
∵,
∴,
∴,
∴∽,
∴,
∴,
∴设,
∴,
∴,
∴,
即:;
(2)如图2,在矩形中,
∵平分,
∴,
∵,
∴,
∴,
∴,
∴,
∵,
∴,
∴,
∵,
∴,
∴,
∵,
∴≌,
∴,
∴,
过点作于,
∴,
∴,,
∵,
∴∽,
∴,
设,
∴,
∴,
∴,
在中,;
(3)①在矩形中,,
∵,,
∴,
∵,
∴,
由折叠知,,,,
∴,
设,
∴,
根据勾股定理得,,
∴,
∴,,
∵,
∴,
∴,
∴∽,
∴,
∵,
∴,
∵,
∴∽,
∴,
∴,
∴,
∴;
②相似,理由:由折叠知,,,
∴,
∵,
∴,
∴,
∵,
∴,
∴,
∴,
∵,
∴,
∴,
∵,
∴,
∴∽.
练习册系列答案
相关题目