题目内容
【题目】如图,一次函数y=k1x+b的图象经过A(0,﹣2),B(1,0)两点,与反比例函数的图象在第一象限内的交点为M,若△OBM的面积为2.
(1)求一次函数和反比例函数的表达式;
(2)在x轴上是否存在点P,使AM⊥MP?若存在,求出点P的坐标;若不存在,说明理由.
【答案】(1);(2)是,P的坐标为(11,0).
【解析】
(1)根据一次函数y= k1x+b的图象经过A(0,-2),B(1,0)可得到关于b、k1的方程组,进而可得到一次函数的解析式,设M(m,n)作MD⊥x轴于点D,由△OBM的面积为2可求出n的值,将M(m,4)代入y=2x-2求出m的值,由M(3,4)在双曲线y= 上即可求出k的值,进而求出其反比例函数的解析式;
(2)过点M(3,4)作MP⊥AM交x轴于点P,由MD⊥BP可求出∠PMD=∠MBD=∠ABO,再由锐角三角函数的定义可得出OP的值,进而可得出结论.
解:(1)∵直线y=k1x+b过A(0,﹣2),B(1,0)两点
∴,
∴
∴一次函数的表达式为y=2x﹣2.
∴设M(m,n),作MD⊥x轴于点D
∵S△OBM=2,
∴ ,
∴
∴n=4
∴将M(m,4)代入y=2x﹣2得4=2m﹣2,
∴m=3
∵M(3,4)在双曲线 上,
∴ ,
∴k2=12
∴反比例函数的表达式为
(2)过点M(3,4)作MP⊥AM交x轴于点P,
∵MD⊥BP,
∴∠PMD=∠MBD=∠ABO
∴tan∠PMD=tan∠MBD=tan∠ABO= =2
∴在Rt△PDM中, ,
∴PD=2MD=8,
∴OP=OD+PD=11
∴在x轴上存在点P,使PM⊥AM,此时点P的坐标为(11,0)
练习册系列答案
相关题目