题目内容
【题目】矩形ABCD中,AB=2,AD=4,将矩形ABCD绕点C顺时针旋转至矩形EGCF(其中E、G、F分别与A、B、D对应).
(1)如图1,当点G落在AD边上时,直接写出AG的长为 ;
(2)如图2,当点G落在线段AE上时,AD与CG交于点H,求GH的长;
(3)如图3,记O为矩形ABCD对角线的交点,S为△OGE的面积,求S的取值范围.
【答案】(1)4﹣2;(2);(3)4﹣≤S≤4+
【解析】
(1)在Rt△DCG中,利用勾股定理求出DG即可解决问题;
(2)首先证明AH=CH,设AH=CH=m,则DH=AD﹣HD=4﹣m,在Rt△DHC中,根据CH2=CD2+DH2,构建方程求出m即可解决问题;
(3)如图,当点G在对角线AC上时,△OGE的面积最小,当点G在AC的延长线上时,△OE′G′的面积最大,分别求出面积的最小值,最大值即可解决问题.
解:(1)如图1中,
∵四边形ABCD是矩形,
∴BC=AD=CG=4,∠D=90°,
∵AB=CD=2,
∴DG===2,
∴AG=AB﹣BG=4﹣2,
故答案为:4﹣2.
(2)如图2中,
由四边形CGEF是矩形,得到∠CGE=90°,
∵点G在线段AE上,
∴∠AGC=90°,
∵CA=CA,CB=CG,
∴Rt△ACG≌Rt△ACB(HL).
∴∠ACB=∠ACG,
∵AB∥CD
∴∠ACG=∠DAC,
∴∠ACH=∠HAC,
∴AH=CH,设AH=CH=m,则DH=AD﹣AH=5﹣m,
在Rt△DHC中,∵CH2=DC2+DH2,
∴m2=22+(4﹣m)2,
∴m=,
∴AH=,GH===.
(3)在Rt△ABC中,,,
由题可知,G点在以C点为圆心,BC为半径的圆上运动,且GE与该圆相切,因为GE=AB不变,所以O到直线GE的距离即为△OGE的高,当点G在对角线AC上时,OG最短,即△OGE的面积最小,最小值=×OG×EG=×2×(4﹣)=4﹣.
当点G在AC的延长线上时,OG最长,即△OE′G′的面积最大.最大值=×E′G′×OG′=×2×(4+)=4+.
综上所述,4﹣≤S≤4+.