题目内容

【题目】如图,BD为矩形ABCD的对角线,AE⊥BD,垂足为E,tan∠BAE= ,BE=1,点P、Q分别在BD、AD上,连接AP、PQ,则AP+PQ的最小值为

【答案】3
【解析】解:

∵四边形ABCD为矩形,且AE⊥BD,tan∠BAE= ,BE=1,

∴AB=2,AE=

∵tan∠BAE=

∴∠BAE=30°,

∴∠EAD=60°,

∵AE=

∴DE=3,

如图,设A点关于BD的对称点为A′,连接A′D,PA′,

则A′A=2AE=2 ,AD=A′D=2

∴△AA′D是等边三角形,

∵PA=PA′,

∴当A′、P、Q三点在一条线上时,A′P+PQ最小,

又垂线段最短可知当PQ⊥AD时,A′P+PQ最小,

∴AP+PQ=A′P+PQ=A′Q=DE=

所以答案是:

【考点精析】认真审题,首先需要了解轴对称-最短路线问题(已知起点结点,求最短路径;与确定起点相反,已知终点结点,求最短路径;已知起点和终点,求两结点之间的最短路径;求图中所有最短路径).

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网