题目内容
【题目】已知:点M是平行四边形ABCD对角线AC所在直线上的一个动点(点M不与点A、C重合),分别过点A、C向直线BM作垂线,垂足分别为点E、F,点O为AC的中点.
⑴如图1,当点M与点O重合时,OE与OF的数量关系是 .
⑵直线BM绕点B逆时针方向旋转,且∠OFE=30°.
①如图2,当点M在线段AC上时,猜想线段CF、AE、OE之间有怎样的数量关系?请你写出来并加以证明;
②如图3,当点M在线段AC的延长线上时,请直接写出线段CF、AE、OE之间的数量关系.
【答案】(1)OE=OF;(2)①,详见解析;②CF=OE-AE
【解析】
(1)由△AOE≌△COF即可得出结论.
(2)①图2中的结论为:CF=OE+AE,延长EO交CF于点N,只要证明△EOA≌△NOC,△OFN是等边三角形,即可解决问题.
②图3中的结论为:CF=OE-AE,延长EO交FC的延长线于点G,证明方法类似.
解:⑴∵
∴AE∥CF
∴ 又,OA=OC
∴△AOE≌△COF.
∴OE=OF.
⑵①
延长EO交CF延长线于N.
∵
∴AE∥CF
∴ 又,OA=OC
∴△OAE≌△OCN
∴AE=CN,OE=ON 又,
∴OF=ON=OE,
∴OF=FN=ON=OE,又AE=CN
∴CF=AE-OE
②CF=OE-AE,证明如下:
延长EO交FC的延长线于点G
∵
∴AE∥CF
∴∠G=∠AEO,∠OCG=∠EA0,
又∵AO=OC,
∴△OAE≌△OCG.
∴AE=CG,OG=OE.
又,
∴OF=OG=OE,
∴△OGF是等边三角形,
∴FG=OF=OE.
∴CF=OE-AE.
练习册系列答案
相关题目