题目内容

【题目】已知:点M是平行四边形ABCD对角线AC所在直线上的一个动点(点M不与点AC重合),分别过点AC向直线BM作垂线,垂足分别为点EF,点OAC的中点.

⑴如图1,当点M与点O重合时,OEOF的数量关系是

⑵直线BM绕点B逆时针方向旋转,且∠OFE=30°

①如图2,当点M在线段AC上时,猜想线段CFAEOE之间有怎样的数量关系?请你写出来并加以证明;

②如图3,当点M在线段AC的延长线上时,请直接写出线段CFAEOE之间的数量关系.

【答案】(1)OE=OF(2)①,详见解析;②CF=OE-AE

【解析】

1)由△AOE≌△COF即可得出结论.
2)①图2中的结论为:CF=OE+AE,延长EOCF于点N,只要证明△EOA≌△NOC,△OFN是等边三角形,即可解决问题.
②图3中的结论为:CF=OE-AE,延长EOFC的延长线于点G,证明方法类似.

解:⑴∵

AECF

,OA=OC

∴△AOE≌△COF.

OE=OF

⑵①

延长EOCF延长线于N

AECF

,OA=OC

∴△OAE≌△OCN

AE=CN,OE=ON ,

OF=ON=OE,

OF=FN=ON=OE,AE=CN

CF=AE-OE

CF=OE-AE,证明如下:

延长EOFC的延长线于点G

AECF

∴∠G=∠AEO,∠OCG=∠EA0,

又∵AO=OC,

∴△OAE≌△OCG.

AE=CG,OG=OE.

,

OF=OG=OE,

∴△OGF是等边三角形,

∴FG=OF=OE.

CF=OE-AE.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网