题目内容
【题目】如图所示,在△ABC中,AB=AC,D,E是△ABC内两点,AD平分∠BAC,∠EBC≡∠E=60°,若BE=10,DE=4,则BC的长度是_____.
【答案】14 .
【解析】
作出辅助线后根据等腰三角形的性质得出BE=10,DE=4,进而得出△BEM为等边三角形,△EMD为等边三角形,从而得出BN的长,进而求出答案.
延长ED交BC于M,延长AD交BC于N,
∵AB=AC,AD平分∠BAC,
∴AN⊥BC,BN=CN,
∵∠EBC=∠E=60°,
∴△BEM为等边三角形,
∴BE=EM
∵BE=10,DE=4,
∴DM=EM-DE═10-4=6,
∵△BEM为等边三角形,
∴∠EMB=60°,
∵AN⊥BC,
∴∠DNM=90°,
∴∠NDM=30°,
∴NM=3,
∴BN=7,
∴BC=2BN=14,
故答案为:14.
练习册系列答案
相关题目