题目内容

【题目】如图,抛物线y=ax2+bx﹣3(a0)与x轴交于A,B两点(点A在点B左侧),与y轴交于点C,且BO=OC=3AO.

(1)求抛物线的解析式;

(2)在抛物线的对称轴上是否存在点P,使△PBC是等腰三角形?若存在,请直接写出符合条件的点P坐标;若不存在,请说明理由.

【答案】(1)y=x2﹣2x﹣3;(2)存在,理由见解析;符合条件的P点坐标为P(1,﹣1)或P(1,)或P(1,﹣)或P(1,﹣3+)或P(1,﹣3﹣).

【解析】

(1)先求出点C的坐标,在由BO=OC=3AO,确定出点B,A的坐标,最后用待定系数法求出抛物线解析式.
2)设出点P的坐标,表示出PB,PC,求出BC,分三种情况利用两边相等建立方程求解即可.

(1)∵抛物线y=ax2+bx﹣3,

c=﹣3,

C(0,﹣3),

OC=3,

BO=OC=3AO,

BO=3,AO=1,

B(3,0),A(﹣1,0),

∵该抛物线与x轴交于A、B两点,

∴抛物线解析式为y=x2﹣2x﹣3,

(2)存在,

理由:设P(1,m),

B(3,0),C(0,﹣3),

BC=3,PB=,PC=

∵△PBC是等腰三角形,

①当PB=PC时,

=

m=﹣1,

P(1,﹣1),

PB=BC时,

3=

m=±

P(1,)或P(1,﹣),

③当PC=BC时,

3=

m=﹣3±

P(1,﹣3+)或P(1,﹣3﹣),

∴符合条件的P点坐标为P(1,﹣1)或P(1,)或P(1,﹣)或P(1,﹣3+)或P(1,﹣3﹣).

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网