题目内容
【题目】如图,直线l:y=x+6交x、y轴分别为A、B两点,C点与A点关于y轴对称.动点P、Q分别在线段AC、AB上(点P不与点A、C重合),满足∠BPQ=∠BAO.
(1)点A坐标是 ,点B的坐标 ,BC= .
(2)当点P在什么位置时,△APQ≌△CBP,说明理由.
(3)当△PQB为等腰三角形时,求点P的坐标.
【答案】(1)A的坐标是(﹣8,0),点B的坐标是(0,6),BC==10,(2)当P的坐标是(2,0)时,△APQ≌△CBP.(3)(﹣8,0),(0,6),10.
【解析】
试题分析:(1)把x=0和y=0分别代入一次函数的解析式,求出A、B的坐标,根据勾股定理求出BC即可.
(2)求出∠PAQ=∠BCP,∠AQP=∠BPC,根据点的坐标求出AP=BC,根据全等三角形的判定推出即可.
(3)分为三种情况:①PQ=BP,②BQ=QP,③BQ=BP,根据(2)即可推出①,根据三角形外角性质即可判断②,根据勾股定理得出方程,即可求出③.
解:(1)∵y=x+6
∴当x=0时,y=6,
当y=0时,x=﹣8,
即点A的坐标是(﹣8,0),点B的坐标是(0,6),
∵C点与A点关于y轴对称,
∴C的坐标是(8,0),
∴OA=8,OC=8,OB=6,
由勾股定理得:BC==10,
(2)当P的坐标是(2,0)时,△APQ≌△CBP,
理由是:∵OA=8,P(2,0),
∴AP=8+2=10=BP,
∵∠BPQ=∠BAO,∠BAO+∠AQP+∠APQ=180°,∠APQ+∠BPQ+∠BPC=180°,
∴∠AQP=∠BPC,
∵A和C关于y轴对称,
∴∠BAO=∠BCP,
在△APQ和△CBP中,
,
∴△APQ≌△CBP(AAS),
∴当P的坐标是(2,0)时,△APQ≌△CBP.
(3)分为三种情况:
①当PB=PQ时,∵由(2)知,△APQ≌△CBP,
∴PB=PQ,
即此时P的坐标是(2,0);
②当BQ=BP时,则∠BPQ=∠BQP,
∵∠BAO=∠BPQ,
∴∠BAO=∠BQP,
而根据三角形的外角性质得:∠BQP>∠BAO,
∴此种情况不存在;
③当QB=QP时,则∠BPQ=∠QBP=∠BAO,
即BP=AP,
设此时P的坐标是(x,0),
∵在Rt△OBP中,由勾股定理得:BP2=OP2+OB2,
∴(x+8)2=x2+62,
解得:x=﹣,
即此时P的坐标是(﹣,0).
∴当△PQB为等腰三角形时,点P的坐标是(2,0)或(﹣,0).
故答案为:(﹣8,0),(0,6),10.