题目内容
【题目】为了美化环境,建设宜居成都,我市准备在一个广场上种植甲、乙两种花卉,经市场调查,甲种花卉的种植费用y(元)与种植面积x(m2)之间的函数关系如图所示,乙种花卉的种植费用为每平方米100元.
(1)直接写出当0≤x≤300和x>300时,y与x的函数关系式;
(2)广场上甲、乙两种花卉的种植面积共1200m2,若甲种花卉的种植面积不少于200m2,且不超过乙种花卉种植面积的2倍,那么应该怎样分配甲、乙两种花卉的种植面积才能使种植总费用最少?最少总费用为多少元?
【答案】(1)(1)y=;(2)应该分配甲、乙两种花卉的种植面积分别是800m2 和400m2,才能使种植总费用最少,最少总费用为119000元.
【解析】
(1)由图可知y与x的函数关系式是分段函数,待定系数法求解析式即可.
(2)设甲种花卉种植为a m2,则乙种花卉种植(1200-a)m2,根据实际意义可以确定a的范围,结合种植费用y(元)与种植面积x(m2)之间的函数关系可以分类讨论最少费用为多少.
(1)y=
(2)设甲种花卉种植为 a m2,则乙种花卉种植(1200-a)m2.
∴,
∴200≤a≤800
当200≤a≤300时,W1=130a+100(1200-a)=30a+120000.
当a=200时.Wmin=126000 元
当300<a≤800时,W2=80a+15000+100(1200-a)=135000-20a.
当a=800时,Wmin=119000 元
∵119000<126000
∴当a=800时,总费用最少,最少总费用为119000元.
此时乙种花卉种植面积为1200-800=400m2.
答:应该分配甲、乙两种花卉的种植面积分别是800m2 和400m2,才能使种植总费用最少,最少总费用为119000元.
【题目】一个不透明的袋子中装有若干个除颜色外均相同的小球,小明每次从袋子中摸出一个球,记录下颜色,然后放回,重复这样的试验1000次,记录结果如下:
实验次数n | 200 | 300 | 400 | 500 | 600 | 700 | 800 | 1000 |
摸到红球 次数m | 151 | 221 | 289 | 358 | 429 | 497 | 571 | 702 |
摸到红球 频率 | 0.75 | 0.74 | 0.72 | 0.72 | 0.72 | 0.71 | a | b |
(1)表格中a=_____;(精确到0.01)
(2)估计从袋子中摸出一个球恰好是红球的概率约为______;(精确到0.1)
(3)如果袋子中有7个红球,那么袋子中除了红球,估计还有几个其他颜色的球?