题目内容
【题目】(10分) 如图所示,求∠A+∠B+∠C+∠D+∠E+∠F的度数.
【答案】360°.
【解析】试题分析:连接BE,根据三角形外角的性质可得∠1=∠C+∠D=∠CBE+∠DEB,再由四边形的内角和定理可得∠A+∠ABC+∠C+∠D+∠DEF+∠F=∠A+∠ABC+∠CBE+∠DEB+∠DEF+∠F=∠A+∠ABE+∠BEF+∠F=360°.
试题解析:解:如图,连接BE.
∵∠1=∠C+∠D,∠1=∠CBE+∠DEB,
∴∠C+∠D=∠CBE+∠DEB,
∴∠A+∠ABC+∠C+∠D+∠DEF+∠F
=∠A+∠ABC+∠CBE+∠DEB+∠DEF+∠F
=∠A+∠ABE+∠BEF+∠F.
又∵∠A+∠ABE+∠BEF+∠F=360°,
∴∠A+∠ABC+∠C+∠D+∠DEF+∠F=360°.
练习册系列答案
相关题目