题目内容
【题目】已知:在Rt△ABC中,∠C=90°∠A、∠B、∠C所对的边分别记作a、b、c.
(1)如图1,分别以△ABC的三条边为边长向外作正方形,其正方形的面积由小到大分别记作S1、S2、S3,则有____________;
(2)如图2,分别以△ABC的三条边为直径向外作半圆,其半圆的面积由小到大分别记作S1、S2、S3,请问S1+S2与S3有怎样的数量关系,并证明你的结论;
(3)分别以直角三角形的三条边为直径作半圆,如图3所示,其面积由小到大分别记作S1、S2、S3,根据(2)中的探索,直接回答S1+S2与S3有怎样的数量关系;
(4)若Rt△ABC中,AC=6,BC=8,求出图4中阴影部分的面积.
【答案】(1)S1+S2=S3;(2);(3);(4)24cm.
【解析】试题分析:(1)根据勾股定理即可得到a,b,c满足的关系.
(2)根据正方形的面积公式结合勾股定理就可发现大正方形的面积是两个小正方形的面积和;
(3)分别表示出S1、S2、S3,结合勾股定理即可得出关系式.
(4)根据半圆的面积公式以及勾股定理就可发现:两个小半圆的面积和等于大半圆的面积,从而得出阴影部分的面积=直角三角形的面积.
试题解析:(1)根据勾股定理可得S1+S2=S3.
(2)由题意得,S1=b2,S2=a2,S3=c2,∵a2+b2=c2,∴S1+S2=S3.
(3)S1=×b2,S2=×a2,S3=×c2,∵a2+b2=c2,∴S1+S2=S3.
(4)因为a2+b2=c2,两边同乘以,即得两小半圆的面积和等于大半圆的面积,
从而可得S阴影部分的面积=S直角三角形的面积=×8×6=24.故阴影部分的面积是24.
【题目】为选派一名学生参加全市实践活动技能竞赛,A.B两位同学在学校实习基地现场进行加工直径为20mm的零件的测试,他俩各加工的10个零件的相关数据依次如下图表所示(单位:mm)
平均数 | 方差 | 完全符合要求个数 | |
A | 20 | 0.026 | 2 |
B | 20 | SB2 |
根据测试得到的有关数据,试解答下列问题:
⑴ 考虑平均数与完全符合要求的个数,你认为 的成绩好些;
⑵ 计算出SB2的大小,考虑平均数与方差,说明谁的成绩好些;
⑶ 考虑图中折线走势及竞赛中加工零件个数远远超过10个的实际情况,你认为派谁去参赛较合适?说明你的理由。
【题目】2015年3月3日到3月15日,两会在京矩形,雾霾防治问题受到国民的普遍关注,某报社决定以“对于雾霾,你最关注的话题是什么”为主题,通过街头随访和网络调查两种方式进行调查,根据调查所得数据绘制了表格.
最关注的话题 | 街头随访/人 | 网络调查/人 | 合计/人 |
雾霾是什么 | 120 | 200 | |
雾霾治理 | 40%a | 60%a | a |
雾霾中自我防护策略 | 600 | ||
其他话题 | 60 |
(1)参加本次街头随访和网络调查的总人数是多少人,a的值为多少;
(2)请你将以上表格中空白处补充完整;
(3)若在接受街头随访的人员中随机抽出一人,则抽到最关注“雾霾中自我防护策略”人员的概率是 多少? ;