题目内容
【题目】如图,△ABC是等边三角形,AB=4cm,CD⊥AB于点D,动点P从点A出发,沿AC以2cm/s的速度向终点C运动,当点P出发后,过点P作PQ∥BC交折线AD﹣DC于点Q,以PQ为边作等边三角形PQR,设四边形APRQ与△ACD重叠部分图形的面积为S(cm2),点P运动的时间为t(s).
(1)当点Q在线段AD上时,用含t的代数式表示QR的长;
(2)求点R运动的路程长;
(3)当点Q在线段AD上时,求S与t之间的函数关系式;
(4)直接写出以点B、Q、R为顶点的三角形是直角三角形时t的值.
【答案】(1)证明见解析(2)2+2(3)①S=S菱形APRQ2t2;②S=﹣t2+6t﹣2(4)t=或t=
【解析】
试题分析:(1)易证△APQ是等边三角形,即可得到QR=PQ=AP=2t;
(2)过点A作AG⊥BC于点G,如图②,易得点R运动的路程长是AG+CG,只需求出AG、CG就可解决问题;
(3)四边形APRQ与△ACD重叠部分图形可能是菱形,也可能是五边形,故需分情况讨论,然后运用割补法就可解决问题;
(4)由于直角顶点不确定,故需分情况讨论,只需分∠QRB=90°和∠RQB=90°两种情况讨论,即可解决问题.
试题解析:(1)如图①,
∵△ABC是等边三角形,
∴∠ACB=∠B=60°.
∵PQ∥BC,
∴∠APQ=∠ACB=60°,∠AQP=∠B=60°,
∴△APQ是等边三角形.
∴PQ=AP=2t.
∵△PQR是等边三角形,
∴QR=PQ=2t;
(2)过点A作AG⊥BC于点G,如图②,
则点R运动的路程长是AG+CG.
在Rt△AGC中,∠AGC=90°,sin60°=,cos60°=,AC=4,
∴AG=2,CG=2.
∴点R运动的路程长2+2;
(3)①当0<t≤时,如图③,
S=S菱形APRQ=2×S正△APQ=2××(2t)2=2t2;
②当<t≤1时,如图④
PE=PCsin∠PCE=(4﹣2t)×=2﹣t,
∴ER=PR﹣PE=2t﹣(2﹣t)=3t﹣2,
∴EF=ERtanR=(3t﹣2)
∴S=S菱形APRQ﹣S△REF
=2t2﹣(3t﹣2)2=﹣t2+6t﹣2;
(4)t=或t=
提示:①当∠QRB=90°时,如图⑤,
cos∠RQB=,
∴QB=2QR=2QA,
∴AB=3QA=6t=4,
∴t=;
②当∠RQB=90°时,如图⑥,
同理可得BC=3RC=3PC=3(4﹣2t)=4,
∴t=.
【题目】某校欲招聘一名数学教师,学校对甲、乙、丙三位候选人进行了三项能力测试,各项测试成绩满分均为100分,根据结果择优录用.三位候选人的各项测试成绩如下表所示:
测试项目 | |||
测试成绩/分 | |||
甲 | 乙 | 丙 | |
教学能力 | 85 | 73 | 73 |
科研能力 | 70 | 71 | 65 |
组织能力 | 64 | 72 | 84 |
(1)如果根据三项测试的平均成绩,谁将被录用,说明理由;
(2)根据实际需要,学校将教学、科研和组织三项能力测试得分按5∶3∶2的比例确定每人的成绩,谁将被录用,说明理由.