题目内容
【题目】在平面直角坐标系xOy中,一次函数的图象与y轴交于点A,过点,且平行于x轴的直线与一次函数的图象,反比例函数的图象分别交于点C,D.
(1)求点D 的坐标(用含m的代数式表示);
(2)当m = 1时,用等式表示线段BD与CD长度之间的数量关系,并说明理由;
(3)当BD≤CD时,直接写出m的取值范围.
【答案】(1);(2)BD=2CD,理由见解析;(3)或.
【解析】
(1)先求出点D的纵坐标,再将点D代入反比例函数的解析式可得其横坐标,由此即可得出答案;
(2)先根据(1)得出点D的坐标,从而可得BD的长,再根据一次函数的解析式可得点C的坐标,从而可得CD的长,由此即可得出答案;
(3)先根据点B、C、D的坐标得出,再分三种情况,然后分别根据建立不等式求解即可.
(1)∵过点且平行于x轴的直线与反比例函数的图象交于点D
∴点D的纵坐标为
由反比例函数的解析式得:点D的横坐标为
故点D的坐标为;
(2),理由如下:
∵过点且平行于x轴的直线与一次函数的图象交于点C
∴点C的纵坐标为
由一次函数的解析式得:点C的横坐标为
当时,
;
(3)由(1)、(2)可知,
则
由题意,分以下三种情况:
①当时,
由得:
解得(符合题设)
②当时,
由得:
解得(不符题设,舍去)
③当时,
此时必成立
即时,
综上,m的取值范围为或.
【题目】某校为了解学生对“防溺水”安全知识的掌握情况,从全校1500名学生中随机抽取部分学生进行测试,并将测试成绩(百分制,得分均为整数)进行统计分析,绘制了不完整的频数表和频数直方图.
组别 | 成绩x(分) | 频数(人) | 频率 |
A组 | 50≤x<60 | 6 | 0.12 |
B组 | 60≤x<70 | a | 0.28 |
C组 | 70≤x<80 | 16 | 0.32 |
D组 | 80≤x<90 | 10 | 0.20 |
E组 | 90≤x≤100 | 4 | 0.08 |
由图表中给出的信息回答下列问题:
(1)表中的a= ;抽取部分学生的成绩的中位数在 组;
(2)把如图的频数直方图补充完整;
(3)如果成绩达到80分以上(包括80分)为优秀,请估计该校1500名学生中成绩优秀的人数.
【题目】如图,P是线段AB上的一点,AB=6cm,O是AB外一定点.连接OP,将OP绕点O顺时针旋转120°得OQ,连接PQ,AQ.小明根据学习函数的经验,对线段AP,PQ,AQ的长度之间的关系进行了探究.
下面是小明的探究过程,请补充完整:
(1)对于点P在AB上的不同位置,画图、测量,得到了线段AP,PQ,AQ的长度(单位:cm)的几组值,如表:
位置1 | 位置2 | 位置3 | 位置4 | 位置5 | 位置6 | 位置7 | |
AP | 0.00 | 1.00 | 2.00 | 3.00 | 4.00 | 5.00 | 6.00 |
PQ | 4.00 | 2.31 | 0.84 | 1.43 | 3.07 | 4.77 | 6.49 |
AQ | 4.00 | 3.08 | 2.23 | 1.57 | 1.40 | 1.85 | 2.63 |
在AP,PQ,AQ的长度这三个量中,确定 的长度是自变量, 的长度和 的长度都是这个自变量的函数;/span>
(2)在同一平面直角坐标系xOy中,画出(1)中所确定的函数的图象;
(3)结合函数图象,解决问题:当AQ=PQ时,线段AP的长度约为 cm.
【题目】某班甲、乙、丙三名同学20天的体温数据记录如下表:
甲的体温 | 乙的体温 | 丙的体温 | ||||||||||||
温度(℃) | 36.1 | 36.4 | 36.5 | 36.8 | 温度(℃) | 36.1 | 36.4 | 36.5 | 36.8 | 温度(℃) | 36.1 | 36.4 | 36.5 | 36.8 |
频数 | 5 | 5 | 5 | 5 | 频数 | 6 | 4 | 4 | 6 | 频数 | 4 | 6 | 6 | 4 |
则在这20天中,甲、乙、丙三名同学的体温情况最稳定的是________.