题目内容
【题目】已知,在三角形ABC中,点D在BC上,DE⊥AB于E,点F在AB上,在CF的延长线上取一点G,连接AG.
(1)如图1,若∠GAB=∠B,∠GAC+∠EDB=180°,求证:AB⊥AC.
(2)如图2.在(1)的条件下,∠GAC的平分线交CG于点M,∠ACB的平分线交AB于点N,当∠AMC∠ANC=35°时,求∠AGC的度数。
【答案】(1)见解析;(2)35°
【解析】
(1)根据平行线的判定和性质可得∠GAC+∠ACB=180°,根据等量关系可得∠EDB=∠ACB,根据平行线的判定和性质可得AB⊥AC.
(2)根据余角的性质可得∠MAB=∠ACN,根据三角形外角的性质、角平分线的性质和平行线的性质可得∠AGC的度数.
(1)∵∠GAB=∠B,
∴GA∥BC,
∴∠GAC+∠ACB=180°,
∵∠GAC+∠EDB=180°,
∴∠EDB=∠ACB,
∴ED∥AC,
∵DE⊥AB,
∴AB⊥AC.
(2)∵∠GAC的平分线交CG于点M,∠ACB的平分线交AB于点N,
∴∠ACN+∠MAC=×180°=90°,
∵∠MAB+∠MAC=∠ACN+∠MAC=90°,
∴∠MAB=∠ACN=∠NCB,
∵∠AMC∠ANC=35°,
∴∠BAM+∠NCG=∠BCG=35°,
∵GA∥BC,
∴∠AGC=35°.
练习册系列答案
相关题目
【题目】某摩托车厂本周计划每日生产450辆摩托车,由于工人实行轮休, 每日上班人数不一定相等,实际每日生产量与计划量相比情况如下表: [增加的辆数为正数,减少的辆数为负数]
星期 | 一 | 二 | 三 | 四 | 五 | 六 | 日 |
增减 | -5 | +7 | -3 | +4 | +10 | -9 | -25 |
(1)本周星期六生产多少辆摩托车?
(2)本周总产量与计划产量相比,是增加了还是减少了?为什么?
(3)产量最多的那天比产量最少的那天多生产多少辆?