题目内容

【题目】已知∠AOB90°,在∠AOB的平分线OM上有一点C,将一个三角板的直角顶点与C重合,它的两条直角边分别与OAOB(或它们的反向延长线)相交于点DE.

当三角板绕点C旋转到CDOA垂直时(如图①),易证:ODOEOC

当三角板绕点C旋转到CDOA不垂直时,即在图②,图③这两种情况下,上述结论是否仍然成立?若成立,请给予证明;若不成立,线段ODOEOC之间又有怎样的数量关系?请写出你的猜想,不需证明.

  

【答案】图②中OD+OE=OC成立.证明见解析;图③不成立,有数量关系:OE-OD=OC

【解析】试题分析:当三角板绕点C旋转到CD与OA不垂直时,易得△CKD≌△CHE,进而可得出证明;判断出结果.解此题的关键是根据题意找到全等三角形或等价关系,进而得出OC与OD、OE的关系;最后转化得到结论.

试题解析:图②中OD+OE=OC成立.

证明:过点C分别作OA,OB的垂线,垂足分别为P,Q.

有△CPD≌△CQE,

∴DP=EQ,

∵OP=OD+DP,OQ=OE-EQ,

又∵OP+OQ=OC,

即OD+DP+OE-EQ=OC,

∴OD+OE=OC.

图③不成立,

有数量关系:OE-OD=OC

过点C分别作CK⊥OA,
CH⊥OB,
∵OC为∠AOB的角平分线,且CK⊥OA,CH⊥OB,
∴CK=CH,∠CKD=∠CHE=90°,
又∵∠KCD与∠HCE都为旋转角,
∴∠KCD=∠HCE,
∴△CKD≌△CHE,
∴DK=EH,
∴OE-OD=OH+EH-OD=OH+DK-OD=OH+OK,
由(1)知:OH+OK=OC,
∴OD,OE,OC满足OE-OD=OC.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网