题目内容
【题目】如图,在四边形ABCD中,∠DAB=120°,∠DCB=60°,CB=CD,AC=8,则四边形ABCD的面积为__.
【答案】16
【解析】
延长AB至点E,使BE=DA,连接CE,作CF⊥AB于F,证明△CDA≌△CBE,根据全等三角形的性质得到CA=CE,∠BCE=∠DCA,得到△CAE为等边三角形,根据等边三角形的性质计算,得到答案.
延长AB至点E,使BE=DA,连接CE,作CF⊥AB于F,
∵∠DAB+∠DCB=120°+60°=180°,
∴∠CDA+∠CBA=180°,又∠CBE+∠CBA=180°,
∴∠CDA=∠CBE,
在△CDA和△CBE中,
,
∴△CDA≌△CBE(SAS)
∴CA=CE,∠BCE=∠DCA,
∵∠DCB=60°,
∴∠ACE=60°,
∴△CAE为等边三角形,
∴AE=AC=8,CF=AC=4,
则四边形ABCD的面积=△CAB的面积=×8×4=16,
故答案为:16.
练习册系列答案
相关题目