题目内容

【题目】如图,已知AD⊥EF,CE⊥EF,∠2+∠3=180°.
(1)请你判断∠1与∠BDC的数量关系,并说明理由;
(2)若∠1=70°,DA平分∠BDC,试求∠FAB的度数.

【答案】
(1)猜想:∠1=∠BDC

证明:∵AD⊥EF,CE⊥EF,

∴∠GAD=∠GEC=90°

∴AD∥CE

∴∠ADC+∠3=180°

又∵∠2+∠3=180°,

∴∠2=∠ADC

∴AB∥CD

∴∠1=∠BDC


(2)解:解:∵AD⊥EF,

∴∠FAD=90°.

∵AB∥CD,

∴∠BDC=∠1=70°,

∵DA平分∠BDC,

∴∠ADC= ∠BDC= ×70°=35°.

∵AB∥CD,

∴∠2=∠ADC=35°,

∴∠FAB=∠FAD﹣∠2=90°﹣35°=55°


【解析】(1)先根据垂直的定义得出∠GAD=∠GEC=90°,故可得出AD∥CE,再由平行线的性质∠ADC+∠3=180°,据此可得出AB∥CD,进而可得出结论;(2)先根据平行线的性质得出∠BDC=∠1=70°,再由DA平分∠BDC得出∠ADC的度数,进而得出∠2的度数,由∠FAB=∠FAD﹣∠2即可得出结论.
【考点精析】认真审题,首先需要了解平行线的判定与性质(由角的相等或互补(数量关系)的条件,得到两条直线平行(位置关系)这是平行线的判定;由平行线(位置关系)得到有关角相等或互补(数量关系)的结论是平行线的性质).

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网