题目内容
【题目】在平面直角坐标系中,正方形ABCD的位置如图所示,点A的坐标为(1,0),点D的坐标为(0,2)延长CB交x轴于点A1,作正方形A1B1C1C;延长C1B1交x 轴于点A2,作正方形A2B2C2C1,…按这样的规律进行下去,第2018个正方形的面积为_____.
【答案】5×()2017.
【解析】
根据勾股定理求出AB,证明△ABA1∽△DOA,根据相似三角形的性质求出A1B,计算求出A1C,根据正方形的面积公式求出正方形A1B1C1C的面积,总结规律,根据规律计算即可.
∵点A的坐标为(1,0),点D的坐标为(0,2),
∴OA=1,OD=2,
∵∠AOD=90°,
∴AB=AD==,∠ODA+∠OAD=90°,
∵四边形ABCD是正方形,
∴∠BAD=∠ABC=90°,S正方形ABCD=5,
∴∠ABA1=90°,∠OAD+∠BAA1=90°,
∴∠ODA=∠BAA1,
∴Rt△ABA1∽Rt△DOA,
∴,即,
解得,A1B=,
∴A1C=,
则正方形A1B1C1C的面积=()2=5×,
同理,正方形A2B2C2C1的面积=5×()2,
…
则第2018个正方形的面积为5×()2017,
故答案为:5×()2017.
练习册系列答案
相关题目