题目内容
【题目】如图1,点E为△ABC边AB上的一点,⊙O为△BCE的外接圆,点D为上任意一点.若AE=AC=2n,BC=n2-1,BE=n2-2n+1 .(n≥2,且n为正整数) .
(1)求证:∠CAE+∠CDE=90°;
(2)①如图2,当CD过圆心O时,①将△ACD绕点A顺时针旋转得△AEF,连接DF,请补全图形,猜想CD、DE、DF之间的数量关系,并证明你的猜想;②若n=3,求AD的长.
【答案】(1)证明见解析;(2)①补全图形见解析;,证明见解析;②
【解析】
(1)先计算AB的长,再根据勾股定理的逆定理判定,然后根据直角三角形的性质和圆周角定理的推论即可证得结论;
(2)①根据题意即可补全图形,如图3,由旋转的性质得:,然后根据(1)的结论、四边形的内角和和周角的定义即可推出,再根据勾股定理和等量代换即可得出结论;
②如图4,过点作于,先根据△ABC的面积求出CH的长,再根据勾股定理和线段的和差关系求出AH和HE的长,进而可求出CE的长,由可得其正弦相等,进而可求出CD的长,然后由①的结论可求出DF的长,又易证,然后根据相似三角形的性质即可求出AD的长.
(1)证明:,
,
,,
,
,
,
,
,
即;
(2)解:①补全图形如图3所示;
CD、DE、DF之间的数量关系是:,理由如下:
如图 3,由旋转的性质得:,
由(1)得:,
,
,
,
,
,
;
②当时,,
如图4,过点作,垂足为,
则由△ABC的面积可得:,
,
,
∵CD是直径,∴∠CED=90°,
,,
,
,即:,解得,
∴,
,
,,
,
,
.
【题目】攀枝花得天独厚,气候宜人,农产品资源极为丰富,其中晚熟芒果远销北上广等大城市.某水果店购进一批优质晚熟芒果,进价为10元/千克,售价不低于15元/千克,且不超过40元/每千克,根据销售情况,发现该芒果在一天内的销售量(千克)与该天的售价(元/千克)之间的数量满足如下表所示的一次函数关系.
销售量(千克) | … | 32.5 | 35 | 35.5 | 38 | … |
售价(元/千克) | … | 27.5 | 25 | 24.5 | 22 | … |
(1)某天这种芒果售价为28元/千克.求当天该芒果的销售量
(2)设某天销售这种芒果获利元,写出与售价之间的函数关系式.如果水果店该天获利400元,那么这天芒果的售价为多少元?