题目内容
【题目】如图,在平面直角坐标系中,等边三角形OAB的顶点A的坐标为(5,0),顶点B在第一象限,函数y=(x>0)的图象分别交边OA、AB于点C、D.若OC=2AD,则k=_____
【答案】4
【解析】
作CE⊥x轴于点E,DF⊥x轴于点F, CE=2DF;设OE为a,则CE=;由反比例函数k的几何意义可知△COE与△AOD面积相等,则因OC=2AD可得OF=2a;再由C和D点均在反比例函数上可求解k.
解:作CE⊥x轴于点E,DF⊥x轴于点F,
设OE为a,由题意可知△AOB为等边三角形可得CE=,则DF=,BF=;由反比例函数k的几何意义可知△COE与△AOD面积相等,则由三角形面积公式及CE=2DF可得OF=2OE=2a;由OB=5可得OF+BF=2a+=5,解得a=2,则k=2×2=4.
故答案为:4.
【题目】在一个不透明的袋子中装有除颜色外其余均相同的m个小球,其中 5 个黑球, 从袋中随机摸出一球,记下其颜色,这称为依次摸球试验,之后把它放回袋 中,搅匀后,再继续摸出一球.以下是利用计算机模拟的摸球试验次数与摸出黑球次数的列表:
摸球试验次数 | 100 | 1000 | 5000 | 10000 | 50000 | 100000 |
摸出黑球次数 | 46 | 487 | 2506 | 5008 | 24996 | 50007 |
根据列表,可以估计出 m 的值是( )
A. 5 B. 10 C. 15 D. 20
【题目】甲、乙两名队员参加设计训练,成绩分别被制成下列两个统计图:
根据以上信息,整理分析数据如下:
平均数(环) | 中位数(环) | 众数(环) | 方差 | |
甲 | ||||
乙 |
(1)表格中 , , ;
(2)分别运用表中的四个统计量,简要分析这两名队员的射击训练成绩,若选派其中一名参赛,你认为应选哪名队员?
(3)如果乙再射击次,命中环,那么乙的射击成绩的方差 .(填“变大”“变小”或“不变”)