题目内容
【题目】如图,已知直角坐标系中,A、B、D三点的坐标分别为A(8,0),B(0,4),D(﹣1,0),点C与点B关于x轴对称,连接AB、AC.
(1)求过A、B、D三点的抛物线的解析式;
(2)有一动点E从原点O出发,以每秒2个单位的速度向右运动,过点E作x轴的垂线,交抛物线于点P,交线段CA于点M,连接PA、PB,设点E运动的时间为t(0<t<4)秒,求四边形PBCA的面积S与t的函数关系式,并求出四边形PBCA的最大面积;
(3)抛物线的对称轴上是否存在一点H,使得△ABH是直角三角形?若存在,请直接写出点H的坐标;若不存在,请说明理由.
【答案】(1);(2)S=﹣8t2+32t+32,当t=2时,S有最大值,且最大值为64;(3)H(,11),(, ).
【解析】试题分析:(1)由于A(8,0),D(﹣1,0),故设过A、B、D三点的抛物线的解析式为y=a(x+1)(x﹣8),将B(0,4)代入即可求得a,进而求得抛物线的解析式为;
(2)四边形PBCA可看作△ABC、△PBA两部分;△ABC的面积是定值,关键是求出△PBA的面积表达式;若设直线l与直线AB的交点为Q,先用t表示出线段PQ的长,而△PAB的面积可由(PQOA)求得,在求出S、t的函数关系式后,由函数的性质可求得S的最大值;
(3)根据已知条件得到∠HAB<90°,①当∠ABH=90°时,求得直线AB:y=﹣x+4,直线BH:y=2x+4,于是得到H(,11),②当∠AHB=90°时,过B作BN⊥对称轴于N,则BN=,AG=,设对称轴交x轴于G,根据相似三角形的性质得到HN=(负值舍去),于是得到H(, ).
(1)∵A(8,0),D(﹣1,0),设过A、B、D三点的抛物线的解析式为y=a(x+1)(x﹣8),将B(0,4)代入得﹣8a=4,∴a=﹣,∴抛物线的解析式为,即 ;
(2)△ABC中,AB=AC,AO⊥BC,则OB=OC=4,
(3)存在,∵抛物线的对称轴为:x==,∵直线x=垂直x轴,∴∠HAB<90°,①当∠ABH=90°时,由A(8,0)、B(0,4),得:直线AB:y=﹣x+4,所以,直线BH可设为:y=2x+h,代入B(0,4),得:h=4,∴直线BH:y=2x+4,当x=时,y=11,∴H(,11),②当∠AHB=90°时,过B作BN⊥对称轴于N,则BN=,AG=,设对称轴交x轴于G,∵∠AHG=∠HBN=90°﹣∠BHN,∠BNH=∠AGH=90°,∴△AHG∽△BHN,∴,∴,∴HN(HN+4)=,∴4(HN)2+16HN﹣63=0,解得:HN=(负值舍去),∴H(, ),综上所述,H(,11),(, ).