题目内容
【题目】如图,圆是的外接圆,其切线与直径的延长线相交于点,且.
(1)求的度数;
(2)若,求圆的半径.
【答案】(1)的度数为;(2)圆O的半径为2.
【解析】
(1)如图(见解析),设,先根据等腰三角形的性质得出,再根据圆的性质可得,从而可得,然后根据圆的切线的性质可得,又根据三角形的内角和定理可求出x的值,从而可得的度数,最后根据圆周角定理即可得;
(2)如图(见解析),设圆O的半径为,先根据圆周角定理得出,再根据直角三角形的性质可得,从而可得,然后在中,利用勾股定理求解即可得.
(1)如图,连接OA
设
,
AE是圆O的切线
,即
在中,由三角形的内角和定理得:
即
解得
则由圆周角定理得:
故的度数为;
(2)如图,连接AD
设圆O的半径为,则
BD是圆O的直径
由(1)可知,
则在中,
在中,由勾股定理得:,即
解得或(不符题意,舍去)
则圆O的半径为2.
练习册系列答案
相关题目
【题目】2020年体育中考,增设了考生进入考点需进行体温检测的要求.防疫部门为了解学生错峰进入考点进行体温检测的情况,调查了一所学校某天上午考生进入考点的累计人数(人)与时间(分钟)的变化情况,数据如下表:(表中9-15表示)
时间(分钟) | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 9~15 |
人数(人) | 0 | 170 | 320 | 450 | 560 | 650 | 720 | 770 | 800 | 810 | 810 |
(1)根据这15分钟内考生进入考点的累计人数与时间的变化规律,利用初中所学函数知识求出与之间的函数关系式;
(2)如果考生一进考点就开始测量体温,体温检测点有2个,每个检测点每分钟检测20人,考生排队测量体温,求排队人数最多时有多少人?全部考生都完成体温检测需要多少时间?
(3)在(2)的条件下,如果要在12分钟内让全部考生完成体温检测,从一开始就应该至少增加几个检测点?