题目内容
【题目】如图,在平面直角坐标系中,点A在y轴上,其坐标为(0,4),x轴上的一动
P从原点O出发,沿x轴正半轴方向运动,速度为每秒1个单位长度,以P为直角顶点
第一象限内作等腰Rt△APB.设P点的运动时间为t秒.
(1)填空:当t=2时,点B的坐标为.
(2)在P点的运动过程中,当AB∥x轴时,求t的值;
(3)通过探索,发现无论P点运动到何处,点B始终在一直线上,试求出该直线的函数解析式.
【答案】(1)(﹣2,4);(2)t=4;(3)y=x﹣4
【解析】
(1)将点P的坐标向右平移2个单位到达点O,此时,点A的坐标为:(﹣2,4),将点A围绕点O顺时针旋转90°,此时点B的坐标为:(4,2),将点B的坐标向右平移2个单位,即为此时的点B(6,2),即可求解;
(2)过点B作BC⊥x轴于点C,如图所示.证明四边形ABCO为长方形,则AO=BC=4,则△APB为等腰直角三角形,即可求解;
(3)证明△PAO≌△BPC(AAS).则AP=BP,AO=PC,BC=PO.点A(0,4),点P(t,0),点B(x,y),则PC=AO=4,BC=PO=t=y,CO=PC+PO=4+y=x,即可求解.
(1)将点P的坐标向右平移2个单位到达点O,此时,点A的坐标为:(﹣2,4),
将点A围绕点O顺时针旋转90°,此时点B的坐标为:(4,2),
将点B的坐标向右平移2个单位,即为此时的点B(6,2);
(2)过点B作BC⊥x轴于点C,如图所示.
∵AO⊥x轴,BC⊥x轴,且AB∥x轴,
∴四边形ABCO为长方形,
∴AO=BC=4.
∵△APB为等腰直角三角形,
∴AP=BP,∠PAB=∠PBA=45°,
∴∠OAP=90°﹣∠PAB=45°,
∴△AOP为等腰直角三角形,
∴OA=OP=4,t=4÷1=4(秒);
(3)∵△APB为等腰直角三角形,
∴∠APO+∠BPC=180°﹣90°=90°.
又∵∠PAO+∠APO=90°,∴∠PAO=∠BPC.
∠PAO=∠BPC,
在△PAO和△BPC中,∠AOP=∠PCB=90°,
∴△PAO≌△BPC(AAS).
AP=BP,
∴AO=PC,BC=PO.
∵点A(0,4),点P(t,0),点B(x,y),
∴PC=AO=4,BC=PO=t=y,CO=PC+PO=4+y=x,
∴y=x﹣4.
【题目】“金山”超市现有甲、乙两种糖果若干kg,两种糖果的售价和进价如表
糖果 | 甲种 | 乙种 |
售价 | 36元/kg | 20元/kg |
进价 | 30元/kg | 16元/kg |
(1)超市准备用甲、乙两种糖果混合成杂拌糖出售,混合后糖果的售价是27.2元/kg,现要配制这种杂拌糖果100/kg,需要甲、乙两种糖果各多少千克?
(2)“六一”儿童节前夕,超市准备用5000元购进甲、乙两种糖果共200kg,如何进货才能使这批糖果获得最大利润,最大利润是多少?(注:进货量只能为整数)