题目内容

【题目】(题文)如图,已知正方形ABCD,点E是BC边的中点,DE与AC相交于点F,连接BF,下列结论:①SABF=SADF;②SCDF=2SCEF;③SADF=2SCEF;④SADF=2SCDF,其中正确的是(  )

A. ①②③ B. ②③ C. ①④ D. ①②④

【答案】D

【解析】

由△AFD≌△AFB ,即可推出S△ABF=S△ADF ,故①正确,由BE=EC=BC=AD,AD∥EC,推出,可得S△CDF=2S△CEF,S△ADF=4S△CEF,S△ADF=2S△CDF,故③错误②④正确,由此即可判断.

∵四边形ABCD是正方形,

∴AD∥CB,AD=BC=AB,∠FAD=∠FAB,

在△AFD和△AFB中,

∴△AFD≌△AFB,

∴S△ABF=S△ADF,故①正确,

∵BE=EC=BC=AD,AD∥EC,

∴S△CDF=2S△CEF,S△ADF=4S△CEF,S△ADF=2S△CDF

故③错误②④正确,

故选:D.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网