题目内容
【题目】如图,在矩形ABCD中,点E为AD的中点,不用圆规、量角器等工具,只用无刻度的直尺作图.
(1)如图1,在BC上找点F,使点F是BC的中点;
(2)如图2,连接AC,在AC上取两点P,Q,使P,Q是AC的三等分点.
【答案】(1)详见解析;(2)详见解析.
【解析】
(1)根据矩形的对角线相等且互相平分作出图形即可;
(2)根据矩形的性质和三角形中位线定理作出图形即可.
(1)如图1,连接AC、BD交于点O,延长EO交BC于F,则点F即为所求.
证明如下:
∵ABCD是矩形,
∴BO=OD,AD∥BC,AD=BC,
∴∠EDO=∠FBO.
∵∠EOD=∠FOB,
∴△EOD≌△FOB,
∴ED=FB=AD=BC,
∴F为BC的中点.
(2)如图2,BD交AC于O,延长EO交BC于F.
连接EB交AC于P,连接DF交AC于Q,则P、Q即为所求.
证明如下:
由(1)可得:F为BC的中点,
∴ED=BF=AE=FC,ED∥BF,
∴四边形EBFD是平行四边形,
∴BE∥FD.
∵FC=BF,
∴CQ=PQ.
∵AD∥BC,
∴∠EAC=∠FCA,∠ADQ=∠CFQ.
∵BE∥FD,
∴∠AEP=∠ADQ,
∴∠AEP=∠CFQ.
在△AEP和△CFQ中,
∵∠EAC=∠FCA,AE=CF,∠AEP=∠CFQ,
∴△AEP≌△CFQ,
∴AP=CQ,
∴AP=PQ=CQ,
∴P,Q是AC的三等分点.
【题目】小明经过市场调查,整理出他妈妈商店里一种商品在第天的销售量的相关信息如下表:
时间第(天) | ||
售价(元/件) | 50 | |
每天销量(件) |
已知该商品的进价为每件20元,设销售该商品的每天利润为元.
(1)求出与的函数关系式;
(2)问销售该商品第几天时,当天销售利润最大,最大利润是多少?
(3)该商品在销售过程中,共有多少天每天销售利润不低于2400元?请直接写出结果.
【题目】某地盛产樱桃,一年一度的樱桃节期间,很多果园推出了免费品尝和优惠采摘活动,其中甲、乙两家果园的樱桃品质相同,销售价格也相同,但推出了不同的采摘方案:
甲园 | 游客进园需购买元人的门票,采摘的樱桃六折优惠 |
乙园 | 游客进园不需购买门票,采摘的樱桃在一定数量以内按原价购买,超过部分打折购买 |
小明和爸爸、妈妈在樱桃节期间也来采摘樱桃,若设他们的樱桃采摘量为(千克)(出园时将自己采摘的樱桃全部购买),在甲采摘园所需总费用为(元)在乙采摘园所需总费用为(元),图中的折线表示与之间的函数关系.
(1)①甲、乙两果园的樱桃单价为_____________元千克;
②直接写出的函数表达式:_________________,并在图中补画出的函数图象;
(2)求出与之间的函数关系式;
(3)若小明一家当天所采摘的樱桃不少于千克,选择哪个采摘园更划算?请说明理由.