题目内容

如图,PA、PB是⊙O的切线,切点为A、B,C是⊙O上的一点,已知∠APB=76°,则∠ACB=______.

连接OB、OA、
∵PA、PB是⊙O的切线,切点为A、B,
∴∠PBO=∠PAO=90°,
∵∠APB=76°,
∴∠AOB=360°-∠PBO-∠PAO-∠APB=104°,
∴由圆周角定理得:∠ACB=
1
2
∠AOB=
1
2
×104°=52°,
故答案为:52°.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网