题目内容

【题目】如图,在平面直角坐标系中,菱形ABCD的顶点A的坐标为(3,0),顶点B在y轴正半轴上,顶点D在x轴负半轴上.若抛物线y=-x2-5x+c经过点B、C,则菱形ABCD的面积为_______

【答案】

【解析】

根据抛物线的解析式结合抛物线过点B、C,即可得出点C的横坐标,由菱形的性质可得出AD=AB=BC=5,再根据勾股定理可求出OB的长度,套用平行四边形的面积公式即可得出菱形ABCD的面积.

抛物线的对称轴为x=-

∵抛物线y=-x2-5x+c经过点B、C,且点By轴上,BCx轴,

∴点C的横坐标为-5.

∵四边形ABCD为菱形,

AB=BC=AD=5,

∴点D的坐标为(-2,0),OA=3.

RtABC中,AB=5,OA=3,

OB==4,

S菱形ABCD=ADOB=5×4=20.

故答案为:20.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网