题目内容
【题目】如图1,在等边△ABC中,CD为中线,点Q在线段CD上运动,将线段QA绕点Q顺时针旋转,使得点A的对应点E落在射线BC上,连接BQ,设∠DAQ=α(0°<α<60°且α≠30°).
(1)当0°<α<30°时,
①在图1中依题意画出图形,并求∠BQE(用含α的式子表示);
②探究线段CE,AC,CQ之间的数量关系,并加以证明;
(2)当30°<α<60°时,直接写出线段CE,AC,CQ之间的数量关系.
【答案】(1)图形见解析;∠BQE=60°+2α;(2)CE+AC=CQ;证明见解析;(3)AC-CE=CQ.
【解析】
(1)①先根据等边三角形的性质的QA=QB,进而得出QB=QE,最后用三角形的内角和定理即可得出结论;
②延长CA到点F,使得AF=CE,连接QF,作QH⊥AC于点H.先判断出△QAF≌△QEC,得出QF=QC,再判断出△QCF是底角为30度的等腰三角形,再构造出直角三角形即可得出结论;
(2)同②的方法即可得出结论.
(1)当0°<α<30°时,
①画出的图形如图1所示,
∵△ABC为等边三角形,
∴∠ABC=60°.
∵CD为等边三角形的中线,
∴CD是AB的垂直平分线,
∵Q为线段CD上的点,
∴QA=QB.
∵∠DAQ=α,
∴∠ABQ=∠DAQ=α,∠QBE=60°-α.
∵线段QE为线段QA绕点Q顺时针旋转所得,
∴QE=QA.
∴QB=QE.
∴∠QEB=∠QBE=60°-α,
∴∠BQE=180°-2∠QBE=180°-2(60°-α)=60°+2α;
②CE+AC=CQ;证明:
如图2,延长CA到点F,使得AF=CE,连接QF,作QH⊥AC于点H.
∵∠BQE=60°+2α,点E在BC上,
∴∠QEC=∠BQE+∠QBE=(60°+2α)+(60°-α)=120°+α.
∵点F在CA的延长线上,∠DAQ=α,
∴∠QAF=∠BAF+∠DAQ=120°+α.
∴∠QAF=∠QEC.
又∵AF=CE,QA=QE,
∴△QAF≌△QEC.
∴QF=QC.
∵QH⊥AC于点H,
∴FH=CH,CF=2CH.
∵在等边三角形ABC中,CD为中线,
点Q在CD上,
∴∠ACQ=∠ACB=30°,
即△QCF为底角为30°的等腰三角形.
∴CH=CQcos∠HCQ=CQcos30°=CQ.
∴CE+AC=AF+AC=CF=2CH=CQ.
(2)如图3,当30°<α<60°时,
在AC上取一点F使AF=CE,
∵△ABC为等边三角形,
∴∠ABC=60°.
∵CD为等边三角形的中线,
∵Q为线段CD上的点,
∴CD是AB的垂直平分线,
由等边三角形的对称性得QA=QB.
∵∠DAQ=α,
∴∠ABQ=∠DAQ=α,∠QBE=60°-α.
∵线段QE为线段QA绕点Q顺时针旋转所得,
∴QE=QA.
∴QB=QE.
∴∠QEB=∠QBE=60°-α=∠QAF,
又∵AF=CE,QA=QE,
∴△QAF≌△QEC.
∴QF=QC.
∵QH⊥AC于点H,
∴FH=CH,CF=2CH.
∵在等边三角形ABC中,CD为中线,点Q在CD上,
∴∠ACQ=∠ACB=30°,
即△QCF为底角为30°的等腰三角形.
∴CH=CQcos∠HCQ=CQcos30°=CQ.
∴AC-CE=AC-AF=CF=2CH=CQ.
【题目】已知二次函数,与的部分对应值如下表所示:
… | -1 | 0 | 1 | 2 | 3 | 4 | … | |
… | 6 | 1 | -2 | -3 | -2 | m | … |
下面有四个论断:
①抛物线的顶点为;
②;
③关于的方程的解为;
④.
其中,正确的有___________________